期刊文献+

跨领域文本情感分类研究进展 被引量:14

Research Progress on Cross-domain Text Sentiment Classification
在线阅读 下载PDF
导出
摘要 作为社会媒体文本情感分析的重要研究课题之一,跨领域文本情感分类旨在利用源领域资源或模型迁移地服务于目标领域的文本情感分类任务,其可以有效缓解目标领域中带标签数据不足问题.从3个角度对跨领域文本情感分类方法行了归纳总结:(1)按照目标领域中是否有带标签数据,可分为直推式和归纳式情感迁移方法;(2)按照不同情感适应性策略,可分为实例迁移方法、特征迁移方法、模型迁移方法、基于词典的方法、联合情感主题方法以及图模型方法等;(3)按照可用源领域个数,可分为单源和多源跨领域文本情感分类方法.此外,还介绍了深度迁移学习方法及其在跨领域文本情感分类的最新应用成果.最后,围绕跨领域文本情感分类面临的关键技术问题,对可能的突破方向进行了展望. As an important research topic in social media text sentiment analysis,cross-domain text sentiment classification aims to use the source domain resources or model transfer to serve the target domain text sentiment classification task,which can effectively solve the problem of insufficient data marking in specific domains.In order to solve the problem of cross-domain sentiment adaptation,this article summarizes the existing studies of cross-domain sentiment classification from three perspectives,i.e.,(1)it can be divided into transductive and inductive cross-domain sentiment classification methods according to whether there is labeled data in the target domain;(2)it can be divided into instance transferring based,feature transferring based,model or parameters transferring based,sentiment dictionary based,joint sentiment topic based,and graph model based methods according to different sentiment adaption strategies;(3)it can also be divided into single-source domain and multi-source domains of cross-domain sentiment classification according to the number of available source domains.In addition,it is also introduced that a new approach of deep transfer learning to solve cross-domain sentiment classification problems,and summarize its latest research results in cross-domain sentiment classification.Finally,the challenges are combined with key issues of current cross-domain sentiment classification technology and further study directions are pointed out.
作者 赵传君 王素格 李德玉 ZHAO Chuan-Jun;WANG Su-Ge;LI De-Yu(College of Information,Shanxi University of Finance and Economics,Taiyuan 030006,China;School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China;Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education(Shanxi University),Taiyuan 030006,China)
出处 《软件学报》 EI CSCD 北大核心 2020年第6期1723-1746,共24页 Journal of Software
基金 国家自然科学基金(61906110,61632011,61573231,61672331,61432011,61603229) 山西省高等学校科技创新项目(2019L0500) 山西省应用基础研究计划(201901D211414) 山西省高等学校优秀成果培育项目(2019SK036)。
关键词 跨领域文本情感分类 领域适应 迁移学习 研究进展 cross-domain sentiment classification domain adaptation transfer leaning research progress
  • 相关文献

参考文献12

二级参考文献240

  • 1陈炯,张永奎.一种基于词聚类的中文文本主题抽取方法[J].计算机应用,2005,25(4):754-756. 被引量:17
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:124
  • 4毛勇,周晓波,夏铮,尹征,孙优贤.特征选择算法研究综述[J].模式识别与人工智能,2007,20(2):211-218. 被引量:95
  • 5谭松波.中文情感挖掘语料--chnsenticorp[EB/OL].[2010-05-01].http://www.searchforum.org.cn/tansongbo/corpus-senti.htm.
  • 6Pang B,Lee L,Vaithyanathan S.Thumbs up? Sentiment classification using machine learning techniques[C]//Proc of EMNLP 2002.Morristown,NJ,USA:ACL,2002:79-86.
  • 7Ku L,Liang Y,Chen H.Opinion extraction,summarization and tracking in news and blog corpora[C]//Proc of AAAI 2006.Boston,Massachusetts:ACL,2006.
  • 8赵军,许洪波,黄萱菁,等.中文倾向性分析评测技术报告[R].北京:中文信息学会,2008.
  • 9Aue A,Gamon M.Customizing sentiment classifiers to new domains:A case study[C]//Proc of RANLP 2005.Borovets,Bulgaria:RANLP,2005.
  • 10Blitzer J,Dredze M,Pereira F.Biographies,bollywood,boom-boxes and blenders:Domain adaptation for sentiment classification[C]//Proc of ACL 2007.Prague,Czech Republic:ACL,2007:440-447.

共引文献1123

同被引文献75

引证文献14

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部