期刊文献+

面向跨领域情感分类的统一框架 被引量:10

A Unified Framework for Cross-Domain Sentiment Classification
在线阅读 下载PDF
导出
摘要 文本的情感分类问题,即判断文本中的论断是持支持态度还是反对态度.已有的研究表明,监督分类方法对情感分类很有效.但是多数情况下,已有的标注数据与待判断情感类别的数据不属于同一个领域,此时监督分类算法的性能明显下降,由此产生的即为跨领域情感分类问题.为解决此问题,提出一个统一框架,分多阶段进行跨领域情感分类:首先利用训练域文本的准确标签来得到测试域文本的初始标签;然后将测试域建成一个加权网络,将一些较准确的测试文本作为"源点"和"汇点",进一步利用热传导思想迭代进行跨领域情感分类.实验结果表明,此方法能大幅度提高跨领域情感分类的精度. Sentiment classification of documents aims to determine the opinion (e. g. , negative or positive) of a given document. Existing studies have shown that, Usually, supervised classification approaches perform well in sentiment classification. However, in most cases, the existing labeled data and the unlabeled data don't belong to the same domain. And the performance of sentiment classification decreases sharply when transferred from one domain to another domain. This causes cross-domain sentiment classification, which is a very significant problem and getting more and more attention. A unified framework is proposed, which integrates several stages for cross-domain sentiment classification. Firstly, we utilize the accurate labels of source-domain documents to get the initial labels of target-domain documents. Then, we build the target domain as a weighted network, and choose some target-domain documents whose opinions are determined more accurately as "source components" and "sink components". Further, we apply heat conduction process to the weighted network to improve the performance of cross-domain sentiment classification of target-domain data, with the help of "source components" and "sink components". An experiment is conducted using data from three different domains, and we transfer between two of them. The experiment results indicate that the proposed framework could improve the performance of cross-domain sentiment classification dramatically.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第8期1683-1689,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61100083 60903139 61173064) 国家自然科学基金重点课题(60933005) 国家"二四二"安全专项基金项目(2011F65 2011A001) 国家"九七三"重点基础研究发展计划基金项目(2012CB316303)
关键词 跨领域 情感分类 热传导模型 倾向性分析 迁移学习 cross domain sentiment classi{ication heat conduction model opinion analysis weighted network
  • 相关文献

参考文献21

  • 1胡熠,陆汝占,李学宁,段建勇,陈玉泉.基于语言建模的文本情感分类研究[J].计算机研究与发展,2007,44(9):1469-1475. 被引量:23
  • 2姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 3徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:124
  • 4唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:139
  • 5赵军,许洪波,黄萱菁,等.中文倾向性分析评测技术报告[R].北京:中文信息学会,2008.
  • 6Du Wc.Iu. Ten Songbo. An iterative reinforcement approach for fine-grained opinion mining [C]//Proc of Human Language Technologies: The 2009 Annual Conf of the North American Chapt er of the Association for Computational Linguistics. Stroudsburg. USA: ACL. 2009: 486-493.
  • 7Aue A. Gamon M. Customizing sentiment classifiers to new domains: A case study [OL] //Proc of RANLP, 2005. [2012-05-28]. http://reseerch. microsoft. com/pubs/65430/ new_domain_sentiment. pdf.
  • 8Blitzer.l. Dredze M. Pereira F. Biographies, bollvwood , boom-boxes and blenders: domain adapt arion for sentiment classification [C]//Proc of Association of Computational Linguist ics. Stroudsburg. USA: ACL. 2007: 440-447.
  • 9吴琼,谭松波,许洪波,段洣毅,程学旗.基于随机游走模型的跨领域倾向性分析研究[J].计算机研究与发展,2010,47(12):2123-2131. 被引量:12
  • 10Turney P D. Littman M L. Unsupervised learning of semantic orientation from a hundred-hillion-word corpus. ERB-1094 [R]. Ottawa. Canada. National Research Council Canada, Institute for Information Technology, 2002.

二级参考文献78

  • 1董振东.语义关系的表达和知识系统的建造[J].语言文字应用,1998(3):79-85. 被引量:60
  • 2金珠,林鸿飞,赵晶.基于HowNet的话题跟踪及倾向性分类研究[J].情报学报,2005,24(5):555-561. 被引量:21
  • 3朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 4徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:124
  • 5Pang B,Lee L,Vaithyanathan S.Thumbs up? Sentiment classification using machine learning techniques[C]//Proc of EMNLP 2002.Morristown,NJ,USA:ACL,2002:79-86.
  • 6Ku L,Liang Y,Chen H.Opinion extraction,summarization and tracking in news and blog corpora[C]//Proc of AAAI 2006.Boston,Massachusetts:ACL,2006.
  • 7赵军,许洪波,黄萱菁,等.中文倾向性分析评测技术报告[R].北京:中文信息学会,2008.
  • 8Aue A,Gamon M.Customizing sentiment classifiers to new domains:A case study[C]//Proc of RANLP 2005.Borovets,Bulgaria:RANLP,2005.
  • 9Blitzer J,Dredze M,Pereira F.Biographies,bollywood,boom-boxes and blenders:Domain adaptation for sentiment classification[C]//Proc of ACL 2007.Prague,Czech Republic:ACL,2007:440-447.
  • 10Tan S,Wang Y,Wu G,et al.Using unlabeled data to handle domain-transfer problem of semantic detection[C]//Proc of SAC 2008.New York:ACM,2008:896-903.

共引文献336

同被引文献78

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 2马海兵,刘永丹,王兰成,李荣陆.三种文档语义倾向性识别方法的分析与比较[J].现代图书情报技术,2007(4):43-47. 被引量:15
  • 3胡熠,陆汝占,李学宁,段建勇,陈玉泉.基于语言建模的文本情感分类研究[J].计算机研究与发展,2007,44(9):1469-1475. 被引量:23
  • 4Du Wei{u, Tan Songbo, Cheng Xueqi, et al. Adapting information bottleneck method for automatic construction of domain oriented sentiment lexicon [C] //Proc of the 3rd ACM Int Con{ on Web Search and Data Mining. New York= ACM, 2010:111-120.
  • 5Bollegala D, Weir D, Carroll J. Cross-Domain sentiment classification using a sentiment sensitive thesaurus [J]. IEEE Trans on Knowledge and Data Engineering, 2013, 25 (8): 1719-1731.
  • 6Pang B, Lee L, Vaithyanathan S. Thumbs up? sentiment classification using machine learning techniques [C]//Proc of the Association of Computational Linguistics Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2002:79-86.
  • 7Yu L C, Wu J L, Chang P C, et al. Using a contextual entropy model to expand emotion words and their intensity for the sentiment classification of stock market news [J]. Knowledge-Based Systems, 2013, 4i: 89-97.
  • 8Zhu Zhu, Dai Darning, Ding Yaxing, et al. Employing emotion keywords to improve cross-domain sentiment classification [G] //LNCS 7717 Chinese Lexical Semantics. Berlin: Springer, 2013 64-71.
  • 9Kaya M, Fidan G, Toroslu I H. Transfer learning using twitter data for improving sentiment classification of turkish political news [G] //LNEE 264: Information Sciences and Systems 2013. Berlin.- Springer, 2013:139-148.
  • 10Jambhulkar P, Nirkhi S. A survey paper on cross-domain sentiment analysis [J]. International Journal of Advanced Research in Computer and Communication Engineering,2014, 3(1): 5241-5245.

引证文献10

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部