期刊文献+

基于随机游走模型的跨领域倾向性分析研究 被引量:12

Cross-Domain Opinion Analysis Based on Random-Walk Model
在线阅读 下载PDF
导出
摘要 近年来,研究者们已经在跨领域倾向性分析方面取得了一些进展.然而,现有的方法和系统往往只根据已标注文本或者已标注情感词对目标领域文本进行倾向性分析,却缺乏一个统一的模型框架将文本与情感词之间全部知识进行有机的融合.提出了一种基于随机游走模型的跨领域倾向性分析方法,该模型能够同时利用源领域和目标领域文本与词之间的所有关系来对文本与词进行互相增强,旨在将文本之间的关系、词之间的关系、文本与词之间的相互关系集成到一个完整的理论框架中.实验结果表明,提出的算法能大幅度提高跨领域倾向性分析的精度. Nowadays, more and more people express their opinions on products, books, movies, etc. at review sites, forums, discussion groups, blogs and so on. Determining the opinion of a given document from Web (that is, opinion analysis) has drawn much attention. To guarantee the accuracy of opinion analysis, many methods for opinion analysis require abundant labeled data. But the labeled data in different domains are very imbalanced. So in recent years, some studies have been conducted to deal with cross-domain opinion analysis problems. However, most of the attempts rely on only the labeled documents or the labeled sentiment words, so this kind of methods fail to uncover the full knowledge between the documents and the sentiment words. This paper proposes an approach for cross-domain opinion analysis based on random-walk model by simultaneously utilizing documents and words from both source domain and target domain. The approach can make full use of the mutual reinforcement between documents and words by fusing four kinds of relationships between documents and words, that is, the relationships between documents, the relationships between words, the relationships between words and documents, and the relationships between documents and words. Experimental results indicate that the proposed algorithm could improve the performance of cross-domain opinion analysis dramatically. The average accuracy of the proposed approach is about 15% higher than traditional classifiers, and about 7% higher than the state-of-the-art method.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第12期2123-2131,共9页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(60933005) 国家自然科学基金项目(60803085) 国家“九七三”重点基础研究发展计划基金项目(2007CB311100)
关键词 中文信息处理 随机游走 图模型 跨领域 倾向性分析 Chinese information processing random walk graphic model cross domain opinion analysis
  • 相关文献

参考文献21

  • 1Pang B,Lee L,Vaithyanathan S.Thumbs up? Sentiment classification using machine learning techniques[C]//Proc of EMNLP 2002.Morristown,NJ,USA:ACL,2002:79-86.
  • 2Ku L,Liang Y,Chen H.Opinion extraction,summarization and tracking in news and blog corpora[C]//Proc of AAAI 2006.Boston,Massachusetts:ACL,2006.
  • 3姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 4胡熠,陆汝占,李学宁,段建勇,陈玉泉.基于语言建模的文本情感分类研究[J].计算机研究与发展,2007,44(9):1469-1475. 被引量:23
  • 5赵军,许洪波,黄萱菁,等.中文倾向性分析评测技术报告[R].北京:中文信息学会,2008.
  • 6徐军,丁宇新,王晓龙.使用机器学习方法进行新闻的情感自动分类[J].中文信息学报,2007,21(6):95-100. 被引量:110
  • 7Aue A,Gamon M.Customizing sentiment classifiers to new domains:A case study[C]//Proc of RANLP 2005.Borovets,Bulgaria:RANLP,2005.
  • 8Blitzer J,Dredze M,Pereira F.Biographies,bollywood,boom-boxes and blenders:Domain adaptation for sentiment classification[C]//Proc of ACL 2007.Prague,Czech Republic:ACL,2007:440-447.
  • 9Tan S,Wang Y,Wu G,et al.Using unlabeled data to handle domain-transfer problem of semantic detection[C]//Proc of SAC 2008.New York:ACM,2008:896-903.
  • 10Tan S,Cheng X,Wang Y,et al.Adapting nave Bayes to domain adaptation for sentiment analysis[C]//Proc of ECIR 2009.Berlin:Springer,2009:337-349.

二级参考文献46

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 2徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:124
  • 3姚天昉,等.一个用于汉语汽车评论的意见挖掘系统[A].中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集[C].北京:清华大学出版社,2006,260-281.
  • 4哈尔滨工业大学信息检索研究室.中文依存句法分析概况介绍[EB/OL].http://ir.hit.edu.cn/phpwebsite/index.php?module=pagemaster&PAGE user op=view page&PAGE id=147&MMN position=52:48,2006.
  • 5P.J.Stone,D.C.Dunphy,M.S.Smith,and D.M.Ogilvie.The General Inquirer:A Computer Approach to Content Analysis[M].Cambridge,MA,USA:MIT Press.1966.
  • 6Z.Dong and Q.Dong.HowNet[EB/OL].http://www.keenage.com/zhiwang/e zhiwang.html,2003.
  • 7S.-M.Kim and E.Hovy.Determining the Sentiment of Opinions[A].In:Proceedings of COLING-04,the Conference on Computational Linguistics (COLING-2004)[C].Geneva,Switzerland:2004.1367-1373.
  • 8J.Yi,T.Nasukawa,R.Bunescu,and W.Niblack.Sentiment Analyzer:Extracting Sentiments about a Given Topic Using Natural Language Processing Techniques[A].In:Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM-2003)[C].Melbourne,USA:2003.427-434.
  • 9M.Hu and B.Liu.Mining Opinion Features in Customer Reviews[A].In:Proceedings of Nineteeth National Conference on Artificial Intellgience (AAAI-2004)[C].San Jose,USA:2004.755-760.
  • 10A.-M.Popescu and O.Etzioni.Extracting Product Features and Opinions from Reviews[A].In:Proceedings of the Human Language Technology Conference/Conference on Empirical Methods in Natural Language Processing (HLT-EMNLP-05)[C].Vancouver,Canada:2005.339-346.

共引文献200

同被引文献105

引证文献12

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部