期刊文献+

基于典型相关分析的多视图跨领域情感分类 被引量:6

Multi-view Cross Domain Sentiment Classification Based on Canonical Correlation Analysis
在线阅读 下载PDF
导出
摘要 跨领域的文本分类,是指利用有标记领域的知识去帮助另一个概率分布不同的,未标记领域的知识进行分类的问题。从多视图学习的视角提出一个新的跨领域文本分类的方法(MTV算法)。通过在核空间典型相关分析中引入与标记相关的信息,MTV算法可以得到一个判别性能更优的公共子空间。在多个情感类文本数据上的实验表明,MTV算法可以大大提升传统监督式学习算法面对领域迁移时的分类性能,并且在引入判别式的核空间典型相关分析后,进一步优化性能。 Cross domain text classification aims at leveraging the knowledge in labeled source domains to predict the unlabeled data in another domain, where the distribution is different from the source domains. This paper proposes a new algorithm for cross domain classification in a multi-view learning perspective, named MulTi-View(MTV) transfer classification. By incorporating discriminative information related to labels, a more discriminative common low dimensional space is extracted. In MTV perspective, MTV algorithm provides a clear and neat way to transfer knowledge between domains. By applying KCCA, MTV also gives a closed form solution. Experiments show that MTV algorithm can significantly improve the performance of traditional supervised learning methods on extensive sentiment text datasets.
作者 黄贤立
出处 《计算机工程》 CAS CSCD 北大核心 2010年第24期186-188,共3页 Computer Engineering
基金 淮阴师范学院青年优秀人才支持计划基金资助项目 江苏省淮安市科技支撑(工业)计划基金资助项目(HAG09054-5)
关键词 跨领域学习 迁移学习 情感分类 文本分类 核空间典型相关分析 cross domain learning transfer learning sentiment classification text classification kernel canonical correlation analysis
  • 相关文献

参考文献7

  • 1Blitzer J, McDonald R, Pereira E Domain Adaptation with Structural Correspondence Learning[C]//Proc. of the Conference on Empirical Methods in Natural Language. Sydney, Australia: [s. n.], 2006: 120-128.
  • 2Pan S J, Ni Xiaochuan, Sun Jiantao, et al. Cross-domain Sentiment Classification via Spectral Feature Alignment[C]//Proc. of the 19th International Conference on World Wide Web. Raleigh, North Carolina, USA: [s. n.], 2010: 751-760.
  • 3Raina R, Battle A, Lee H, et al. Self-taught Learning: Transfer Learning from Unlabeled Data[C]//Proc. of the 24th International Conference on Machine Learning. Corvalis, Oregon: ACM Press. 2007: 759-766.
  • 4昝红英,郭明,柴玉梅,吴云芳.新闻报道文本的情感倾向性研究[J].计算机工程,2010,36(15):20-22. 被引量:15
  • 5Hardoon D R, Szedmak S, Shawe-Taylor J. Canonical Correlation Analysis: An Overview with Application to Learning Methods[J]. Neural Computation, 2004, 16(12): 2639-2664.
  • 6Diethe T, Hardoon D R, Shawe-Taylor J. Multiview Fisher Discriminant Analysis[C]//Proc. of Learning from Multiple Sources Workshop. [S. l.]: Springer, 2008.
  • 7Deerwester S, Dumais S T, Furnas G W, et al. Indexing by Latent Semantic Analysis[J]. Journal of the American Society for Information Science, 1990, 41 (6): 391-407.

二级参考文献6

共引文献14

同被引文献40

  • 1蒋盛益,谢照青,余雯.基于代价敏感的朴素贝叶斯不平衡数据分类研究[J].计算机研究与发展,2011,48(S1):387-390. 被引量:21
  • 2邓卫兵.A LIMITED MEMORY QUASI-NEWTON METHOD FOR LARGE SCALE PROBLEM[J].Numerical Mathematics A Journal of Chinese Universities(English Series),1996,5(1):71-79. 被引量:3
  • 3Wilson T,Wiebe J,Hoffmann P.Recognizing ContextualPolarity:An Exploration of Features for Phrase-level SentimentAnalysis[J].Computational Linguistics,2009,35(3):399-433.
  • 4Liu Bing,Hu Minqing,Cheng Junsheng.Opinion Observer:Analyzing and Comparing Opinions on the Web[C]//Proceedings of the 14th International World Wide WebConference.Chiba,Japan:[s.n.],2005.
  • 5Turney P.Thumbs Up or Thumbs Down:Semantic OrientationApplied to Unsupervised Classification of Reviews[C]//Proceedings of the 40th Annual Meeting of the Association forComputational Linguistics.Philadelphia,USA:[s.n.],2002:417-424.
  • 6Pang B,Lee L,Vaithyanathan S.Thumbs Up,SentimentClassification Using Machine Learning Techniques[C]//Proceedings of Conference on Empirical Methods in NaturalLanguage Processing.Philadelphia,USA:[s.n.],2002:79-86.
  • 7Pang B,Lee L.Seeing Stars:Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales[C]//Proceedings of the 43th Annual Meeting of the Association forComputional Linguistics.Ann Arbor,USA:[s.n.],2005:115-124.
  • 8Vilalta R,Drissi Y.A Perspective View and Survey of Meta-learning[J].Artificial Intelligence Review,2002,18(2):77-95.
  • 9Li Shoushan,Huang Churen,Zhou Guodong,et al.EmployingPersonal/Impersonal Views in Supervised and Semi-supervisedSentiment Classification[C]//Proceedings of the 48th AnnualMeeting of the Association for Computational Linguistics.Uppsala,Sweden:[s.n.],2010:414-423.
  • 10Wiebe J.Learning Subjective Adjectives from Corpora[C]//Proc-eedings of Association for the Advancement of ArtificialIntelligence.Las Cruces,USA:[s.n.],2000.

引证文献6

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部