期刊文献+

基于时间序列挖掘的隧道交通事件分析 被引量:3

Traffic Incidents Analysis of Tunnel Based on Time Series Data Mining
在线阅读 下载PDF
导出
摘要 为了及时发现隧道内交通安全隐患,尽量减少交通事故的发生,针对现有隧道交通事件预测方法在实际应用中的不足,引入时间序列法,建立了隧道交通事件时间序列预测模型,该模型可以快捷地得出事故影响因素的预测值,预测出道路交通事件总体发展趋势。实验证明,模型能很好地适应于道路交通事故预测,同时具备了资料较少,建模简单,计算快捷等优点。 In order to discover the hidden danger in highway tunnel in time and try the best to decrease the negative effect of accident, based on the analysis of the deficiency in practical use of present road accident prediction methods, a multi-factor time series method was presented and a multi-factor time series model for forecasting road accidents was built. This model can easily obtain the factors affecting accidents, and forecast the general developing trend of road accidents. An example shows that the model can be well applied to road accident prediction, and that it has such advantages as less required data, simple modeling technique, and quick computation.
出处 《交通信息与安全》 2009年第2期88-91,共4页 Journal of Transport Information and Safety
关键词 时间序列 数据挖掘 交通事件预测 time series data mining traffic incidents prediction
  • 相关文献

参考文献13

二级参考文献25

共引文献210

同被引文献26

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部