期刊文献+

基于混沌时间序列分析法的短时交通流预测研究 被引量:47

Short-Time Traffic Flow Prediction Using Chaos Time Series Theory
在线阅读 下载PDF
导出
摘要 交通流预测分析已成为智能交通的核心研究内容之一.依据混沌时间序列分析方法,建立了短时交通流的预测模型.在对实测的交通流数据进行相空间重构的基础上,综合考虑欧氏距离和均等系数,提出了最邻近点的两步优化选择方法,并采用了局部多项式拟合方法对所选取的最邻近点进行逼近以求得预测公式.本文将此方法运用于东莞东江大道流量预测,比较预测流量和实测流量,得出最大相对误差为0.445%,最小相对误差为0.038%,且单步预测时间仅为38.52秒.结果表明,该预测模型具有较高的精度,同时也能够满足实时性的要求. Traffic flow prediction has become a key issue in intelligent transportation system study.In this paper,a prediction model of short-time traffic flow is presented based on the chaotic time series analysis.After the phase space reconstruction using traffic flow data,a two-step optimized selection method is proposed which considers Euclidean distance and equal coefficient between neighboring point and predicted point.In addition,the prediction model is developed by local polynomial method to approximate the neighboring points.The model proposed in this paper is applied to predict the real traffic flow in Dongjiang Road,Dong Guan.Comparing the traffic flow predicting value with the measure value,the results indicate that the maximal relative error is 0.445% and the minimal one is 0.038%.Moreover,single-step ahead prediction only requires 38.52 seconds.It is proved that the proposed method can significantly improve the prediction accuracy and meet the requirement of the real-time prediction.
出处 《交通运输系统工程与信息》 EI CSCD 2008年第5期68-72,共5页 Journal of Transportation Systems Engineering and Information Technology
基金 自然基金重点项目(60134010)
关键词 短时交通量 混沌预测 相空间重构 局部多项式拟合 short-term traffic flow chaotic prediction phase space reconstruction local polynomial approximation
  • 相关文献

参考文献3

二级参考文献42

  • 1[3]Yang Licai,Jia Lei,Wang Hong.Wavelet network with genetic algorithm and its applications for traffic flow forecasting [C].Fifth World Congress on Intelligent Control and Automation,Conference Proceedings,2004:5330- 5333.
  • 2[5]Smith,Brian L,Williams Billy M,Oswald R,Keith.Comparison of parametric and nonparametric models for traffic flow forecasting [J].Transportation Research Part C:Emerging Technologies,v 10,n 4,August,2002:303-321.
  • 3[7]Zhang Ya-Ping,Pei Yu-Long.Research on traffic flow forecasting model based on cusp catastrophe theory [J].Journal of Harbin Institute of Technology (New Series),v 11,n 1,February,2004:1 - 5.
  • 4[8]Haichen Xu,Daniel J.Dailey.Real Time Highway Traffic Simulation and Prediction Using Inductance Loop Data[C].Vehicle Navigation and Information Systems Conference,1995.Proceedings.July-2Aug.1995:194-199.
  • 5[9]Lam,William H.K.; Shi,JohnW.Z.; Chan,K.S.A traffic flow simulator for short-term travel time forecasting [J].Journal of Advanced Transportation,v 36,n 3,Fall,2002:265-291.
  • 6[10]Lin W.-H.A Gaussian maximum likelihood formulation for short-term forecasting of traffic flow [C].IEEE Conference on Intelligent Transportation Systems,Proceedings,ITSC,2001:150-155.
  • 7[11]Sun Shiliang,Yu Guoqiang,Zhang Changshui.Short-term traffic flow forecasting using sampling Markov Chain method with incomplete data [C].IEEE Intelligent Vehicles Symposium,Proceedings,2004:437- 441.
  • 8[12]Van der Voort,Mascha; Dougherty,Mark;Watson,Susan.Combining Kohonen maps with ARIMA time series models to forecast traffic flow [J].Transportation Research Part C:Emerging Technologies,v 4,n 5,Oct,1996:307-318.
  • 9[13]Chang S C,Kim R S,Kim S J,Ahn B H.Trafficflow forecasting using a 3-stage model [C].IEEE Intelligent Vehicles Symposium,Proceedings,2000:451-456.
  • 10[15]Yuan Zhenzhou,Li Weiyi,Liu Haidong.Forecast of dynamic traffic flow [C].Proceedings of the Conference on Traffic and Transportation Studies,ICTTS,2000:507-512.

共引文献66

同被引文献311

引证文献47

二级引证文献528

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部