期刊文献+

单传感器数据驱动的人体日常短时行为识别方法 被引量:8

Human daily short-time activity recognition method driven by single sensor data
原文传递
导出
摘要 在基于惯性传感器的人体行为识别研究中,特征提取是其中的关键环节之一。而离散数据统计特征的稳定性依赖于特征提取的窗口大小。一般来说,训练数据的窗口长度需要大于一个运动周期。因此,针对测试数据远小于一个运动周期的短序列样本识别问题,提出了一种基于模板匹配的新的解决方案。首先,通过适当分割训练数据的长序列样本,构建一个过完备的短时行为模板库,将待测短时样本与模板库中样本进行一致化处理并进行匹配;其次,在匹配算法中,采用样本间的F范数与整体梯度向量的2范数累加作为匹配度量准则,得到相似度直方图;最后,基于相似度直方图,根据投票策略得到最终分类识别结果。实验表明:在使用单传感器识别短时行为的情况下,新算法比传统算法在精度和稳定性上具有更好的性能,并能适应不同窗口下短时行为分类问题。 In the study of human activity recognition(HAR) based on the inertial sensor, feature extraction was one of the key points. The stability of discrete data statistical features depended on the window size of feature extraction. Generally speaking, the length of window needed to be greater than one motion cycle. Therefore, compared to the traditional behavior recognition, short-time behavior recognition was more difficult. Thus a novel template matching method was proposed for recognizing the test samples whose durations were shorter than one motion cycle. Firstly, by properly dividing the long sequence samples, a complete short-time activity template library was constructed. The short-time samples to be tested and the samples in the template library were processed and matched. Secondly, in the matching algorithm, the similarity histogram was obtained by utilizing the sum of the F norm distance between the samples and the 2 norm distance of the global gradient vector as the matching metric. Finally, based on the similarity histogram, the final classification recognition results were obtained according to the voting strategy. Experiments show that in the case of using a single sensor to identify short-term behavior, the new algorithm had better performance than traditional algorithms in accuracy and stability, and can be adapted to short-term behavior classification problems under different windows.
作者 苏本跃 郑丹丹 汤庆丰 盛敏 Su Benyue;Zheng DANDan;Tang Qingfeng;Sheng Min(School of Computer and Information,Anqing Normal University,Anqing 246011,China;The Key Laboratory of Intelligent Perception and Computing of Anhui Province,Anqing 246011,China;Medical College,Hangzhou Normal University,Hangzhou 311121,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2019年第2期282-290,共9页 Infrared and Laser Engineering
基金 国家自然科学基金(61603003 11471093) 教育部"云数融合科教创新"基金(2017A09116) 安徽省高校优秀拔尖人才培育资助项目(gxbjZD26)
关键词 短时行为 模板匹配 行为模板库 相似度直方图 单传感器 short-time activity template matching activity template library similarity histogram single sensor
  • 相关文献

参考文献3

二级参考文献20

  • 1杨丽娟,张白桦,叶旭桢.快速傅里叶变换FFT及其应用[J].光电工程,2004,31(B12):1-3. 被引量:103
  • 2赵国英,李振波,邓宇,李华.基于检索的人体运动识别和模拟[J].计算机研究与发展,2006,43(2):368-374. 被引量:10
  • 3Ghasemzadeh H and Jafari R. Physical movement monitoring using body sensor networks:a phonological approach to construct spatial decision tress[J].IEEE Transactions on Industrial Informatics,2011,(01):66-77.
  • 4Wang Z L,Jiang M,Hu Y H. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for huaman activity recognition by using wearable sensors[J].{H}IEEE Transactions on Information Technology in Biomedicine,2012,(04):691-699.
  • 5Mi Z;Alexander A S.A feature selection-based framework for human activity recognition using wearable multimodal sensor[A]{H}北京,2011201-208.
  • 6Wang L,Gu T,Tao X P. A hierarchical approach to real-time activity recognition in body sensor networks[J].Journal of Pervasive and Mobile Computing,2012,(01):115-130.
  • 7Cheng L,Hailes S,Chen Z. Compressed Inertial motion data in wireless sensing systems-an initial experiment[A].{H}Washington,D.C,2008.293-296.
  • 8Wu C H and Tseng Y C. Data compression by temporal and spatial correlations in a body-area sensor network:a case study in pilates motion recognition[J].IEEE Transactions on Mobile Computing,2011,(10):1459-1472.
  • 9Ghasemzadeh H and Guenterberg E. Energy-efficient information driven coverage for physical movement monitoring in body sensor networks[J].{H}IEEE Journal on Selected Areas in Communications,2009,(01):58-69.
  • 10Ghasemzadeh H,Loseu V,and Jafari R. Structural action recognition in body sensor networks:distributed classification based on string matching[J].{H}IEEE Transactions on Information Technology in Biomedicine,2010,(02):425-435.

共引文献63

同被引文献78

引证文献8

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部