期刊文献+

人体活动识别数据集的数据处理方法 被引量:5

Human Activity Recognition based on Wearable Sensor Dataset and Convolutional Neural Network
在线阅读 下载PDF
导出
摘要 对由可穿戴设备采集的针对人体活动识别的数据集进行处理,并用处理后的数据对一维卷积神经网络进行训练,测试并得到精准度结果.对数据集的处理使得原本数据集中一些噪音和无效数据被过滤排除掉,在训练神经网络时减少了运算量,提升了神经网络的效率.后经测试,在神经网络结构不变的情况下,处理后的数据集可以使神经网络性能得到提升. The data set for human activity recognition collected by the wearable device was processed,and the processed data was used to train a one-dimensional convolutional neural network to test and obtain accuracy results.The processing of the data set allows some noise and invalid data in the original data set to be filtered out,which reduced the amount of calculation and improved the efficiency of the neural network when training the neural network.After testing,under the condition that the structure of the neural network was unchanged,the processed data set can improve the performance of the neural network.
作者 钟楚轶 朱建军 ZHONG Chuyi;ZHU Jianjun(Changchun Boli Electronic Technology Co.,LTd.,Changchun 130012,China;School of Information and Control Engineering,Jilin Institute of Chemical Technology,Jilin City 132022,China)
出处 《吉林化工学院学报》 CAS 2020年第3期81-84,共4页 Journal of Jilin Institute of Chemical Technology
关键词 数据集处理 卷积神经网络 人体活动识别 dataset processing concolutional neural network human activity recognitio
  • 相关文献

参考文献5

二级参考文献35

共引文献30

同被引文献45

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部