期刊文献+

体域网中基于特征组合的步态行为识别 被引量:3

Gait behavior recognition based on feature combination in body area network
原文传递
导出
摘要 物联网(internet of things,IOT)拥有无处不在的识别、传感和通信能力,体域网(body area network,BAN)属于物联网中和人体相关的领域,其应用广泛,可以在日常生活中对人们进行监测及提供帮助.行走是许多日常活动的基本环节,因而步态分析能为体域网应用提供重要的生理行为信息.现有的步态分析已取得一定的研究成果,但仍存在一些问题,例如大多数步态特征提取是对加速度信号进行6重以上的变换,使得特征达到了45维以上,最后需要通过降维或优化来简化特征,较为复杂.本文设计一种灵活便捷的数据采集系统,并利用小波变换、傅里叶变换和四分位差提取出加速度信号中比较简单、低维度但能反应运动特征的步态参数,之后通过模式识别算法进行步态行为识别验证.实验结果表明该系统使用方便,特征提取方法简单实用,识别精确度为97%,EER(equal error rate)最小可到0.9%. The Internet of Things(IOT) has ubiquitous capabilities of identification,sensing and communication.Body Area Network(BAN) belongs to IOT field related to the human body. It is widely used in e-health applications, helping people monitor their activities in their daily lives. Walking is the basic part of many daily activities, hence gait analysis can provide important information about the physiological behavior in BAN applications. Many existing researches on gait analysis have a good results, but there are still some problems. For example, most gait feature extraction are carried out by more than 6 conversions for acceleration signal, so that the characteristic dimension reaches 45 or more. Therefore, they need to simplify the features by dimension-reduction or optimization, which makes them very complex. In this paper, we firstly design a flexible and convenient data acquisition system. Then we use Wavelet Transform, Fourier Transform and Interquartile Range to extract some simple, low-dimensional motion characteristics of acceleration signal to reflect the characteristics of the movement. Finally, we make recognition and verification of gait behavior by pattern recognition algorithms.Experimental results show that the system is easy to use and the method of feature extraction is simple and practical. And its recognition accuracy reaches 97% and minimum EER(Equal Error Rate) reaches 0.9%.
出处 《中国科学:信息科学》 CSCD 2013年第10期1353-1364,共12页 Scientia Sinica(Informationis)
基金 国家重点基础研究发展计划(973计划)(批准号:2011CB302702) 国家自然科学基金重大项目(批准号:61190114)资助
关键词 物联网 体域网 加速度 特征组合 步态识别 internet of things(IOT) body area network(BAN) acceleration feature combination gait recognition
  • 相关文献

参考文献4

二级参考文献54

  • 1赵莉,冯稷,翟光杰,张利华.小波变换在心磁信号处理中的应用[J].物理学报,2005,54(4):1943-1949. 被引量:8
  • 2Murray M P. Gait as a total pattern of movement. Am J Phys Med, 1967, 46(1): 290.
  • 3Sekine M, Tamura T, Akay M, et al. Discrimination of walking patterns using wavelet-based fractal analysis. IEEE Trans Neural Syst Rehabil Eng, 2002, 10 (3) : 188.
  • 4Wang N, Ambikairajah E, Celler B G, et al. Accelerometry based classification of gait patterns using empirical mode decomposition// Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, 2005:617.
  • 5Wang N, Ambikairajah E, Lovell N H, et al. Accelerometry based classification of walking patterns using time-frequency analy- sis//Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, 2007 : 4899.
  • 6Bidargaddi N, Klingbeil L, Sarela A, et al. Wavelet based ap- proach for posture transition estimation using a waist worn acceler- ometer//Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Lyon, 2007, 1884.
  • 7Turcot K, Aissaoui R, Boivin K, et al. New accelerometric meth- od to discriminate between asymptomatic subjects and patients with medial knee osteoarthritis during 3-D gait. IEEE Trans Biomed Eng, 2008, 55(4) : 1415.
  • 8Bidargaddi N, Sarela A, Klingbeil L, et al. Detecting walking ac- tivity in cardiac rehabilitation by using accelerometer//Proceedings of the 2007 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, ISSNIP. Melbourne, 2007 : 555.
  • 9Sekine M, Tamura T, Fujimoto T, et al. Classification of walking pattern using acceleration waveform in elderly people//Proceedings of the 22nd Annual International Conference of the IEEE Engineer- ing in Medicine and Biology Society. Chicago, 2000:1356.
  • 10Chen M, Huang B F, Xu Y S. Intelligent shoes for abnormal gait detection//Proceedings of the 2008 IEEE International Conference on Robotics and Automation. Pasadena. 2008, 2019.

共引文献51

同被引文献13

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部