期刊文献+

基于CNN-LSTM神经网络的热释电红外传感器人员识别 被引量:13

Person identification based on CNN-LSTM neural network and PIR sensor
在线阅读 下载PDF
导出
摘要 针对热释电红外(PIR)传感器在室内人员识别系统的结构以及识别的准确率问题,设计了一种新型的无线分布式PIR传感器系统,并提出了一种人员识别的新方法。系统采用2只分布在不同高度的PIR传感器,结合对菲涅尔透镜的视场角调制,能够有效探测运动人体的红外信号。通过对2只PIR传感器时域输出信号的采集分析,采用快速傅里叶变换(FFT)算法获取时域信号特征,并将信号特征进行融合。使用深度学习卷积神经网络-长短期记忆(CNN-LSTM)神经网络进行人员的分类识别。实验结果表明:该设计方法在人员的分类识别上实现了99.29%的准确率,在室内人员识别场景中具有良好的应用价值。 Aiming at the problem of structure of pyroelectric infrared(PIR)sensor in indoor person recognition system and accuracy of recognition,a new type of wireless distributed PIR sensor system is designed and a new method of person recognition is proposed.The system uses two PIR sensors distributed at different heights,combined with the field angle modulation of the Fresnel lens,which can effectively detect infrared signal of moving human body.Firstly,the method collects and analyzes the time-domain output signals of the two PIR sensors.Then,fast Fourier transform(FFT)algorithm is used to obtain the characteristics of the time-domain signals,and fuses the signal characteristics of the two sensors.Finally,the deep learning CNN-LSTM neural network is used for person classification and identification.The experimental results show that the proposed method achieves accuracy of 99.29%in classification and identification of persons.It has good application value in indoor person identification scenes.
作者 徐晓冰 焦宇浩 李奇越 吴刚 左涛涛 XU Xiaobing;JIAO Yuhao;LI Qiyue;WU Gang;ZUO Taotao(School of Electrical Engineering and Automation,Hefei University of Technology,Hefei 230009,China)
出处 《传感器与微系统》 CSCD 北大核心 2023年第1期87-90,97,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(51877060)。
关键词 热释电红外传感器 模式识别 深度学习 人员识别 pyroelectric infrared(PIR)sensor pattern recognition deep learning person identification
  • 相关文献

参考文献4

二级参考文献24

  • 1刘卫国,张良莹,姚熹.多层热释电探测器的动态热释电响应[J].电子学报,1995,23(6):71-75. 被引量:2
  • 2BAZIN A I, NIXION M S. Gait verification using probabilistic methods[ A]. Proceedings of 7th IEEE Workshop on Applications of Computer Vision, IEEE, 2005:50-55.
  • 3BODOR R, JACKSON B, PAPANIKOLOPOULOS N. Vision-based human tracking and activity recognition [ C ]. Proceedings of the 11th Mediterranean Conference on Control and Automation IEEE, 2003:150-155.
  • 4ZHOU H Y, HUH SH. A survey: Human movement tracking and stroke rehabilitation [ R ]. Tech. Rep. CSM-420 University of Essex, 2004.
  • 5JONES G D, HODGETTS M A, ALLSO P R E, et al. A novel approach for surveillance using visual and thermal images[ C]. Proceedings of the DERA IEE Workshop on Intelligent Sensor Processing IEEE, 2001:911-919.
  • 6FELLER S D, CULL E, KOWALSKI D, et al. Brady. Tracking and imaging humans on heterogeneous infrared sensor array for tactical applications [ J ]. Unattended Ground Sensor Technology and Applications IV, E. M. Carapezza, ed., Proc. SPIE, 2002,4743:168-175.
  • 7SEKMEN A S, WILKES M, KAWAMURA K. An application of passive human-robot interaction:human tracking based on attention distraction [ J ]. IEEE Trans. Syst. , Man Cybern, 2002 : A 32,248-259.
  • 8BAZIN A I, NIXON M S. Probabilistic combination of static and dynamic gait features for verification [ A ]. In: Proceedings of Biometric Technology for Human Identification Ⅱ. SPIE Defon - and Security Symposium [ C ]. Orlando, FL, United States, 2005,5579:23-30.
  • 9GEISHEIMER J L, MARSHALL W S, GRENEKER E. A continuous-wave (CW) radar for gait analysis[ J]. Proc. of IEEE. Signals, Systems and Computers, 2001,1:843- 838.
  • 10程卫东,董永贵.利用热释电红外传感器探测人体运动特征[J].仪器仪表学报,2008,29(5):1020-1023. 被引量:56

共引文献77

同被引文献139

引证文献13

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部