期刊文献+

基于MSPCA-KECA的冷水机组故障监测及诊断 被引量:10

Fault detection and diagnosis for chillers using MSPCA-KECA
在线阅读 下载PDF
导出
摘要 针对冷水机组同类型不同等级故障的变量变化存在差异会造成误诊断的问题,提出一种基于多尺度主元分析-核熵成分分析(MSPCA-KECA)的故障诊断策略。MSPCA提取故障特征,其输出作为KECA分类器的输入,实现故障的实时监测与自动诊断。首先,改进的MSPCA算法通过将小波多尺度分析与主元分析相结合,筛选故障信息可能存在的尺度直接重构并采用PCA提取故障特征,获取不同类型故障之间差异的同时也保留了同类型但不同等级故障之间的相似性,提高故障诊断的可靠性。之后建立KECA非线性分类器并引入一种新的监测统计量——散度测度统计量,使降维后不同特征信息之间呈现显著的角度差异,易于分类。最后,采用支持向量数据描述(SVDD)算法确定新统计量的控制限,以克服无法获知统计量分布的问题。通过对冷水机组数据的仿真研究,验证了MSPCA-KECA方法的可行性及有效性。 There are differences among different levels of the same type of the fault, which may cause misdiagnose. A fault diagnosis strategy based on multi-scale principal component analysis and kernel entropy component analysis(MSPCA-KECA) is proposed. Taking the features extracted by MSPCA as the input of KECA classifier can be used for fault online detection as well as automatic identification. MSPCA combines wavelet multi-scale analysis with principal component analysis to select the scales which contain fault-related information, and then use PCA to extract the fault-related features, extracting the similarity among different levels of the same type of fault and the difference among different faults, which can improve the ability of fault diagnosis. The combination of KECA and Cauchy-Schwarz(CS) statistics extract and express the angular structure of different kinds of faults, which is good for fault classification. The control limit here is achieved by support vector data description(SVDD) for the unacquainted distribution of the statistics. Through the simulation of ASHRAR 1043-RP chiller data, the feasibility and effectiveness of the MSPCA-KECA method are verified.
作者 齐咏生 张海利 王林 高学金 陆晨曦 QI Yongsheng ZHANG Haili WANG Lin GAO Xuejin LU Chenxi(Institute of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, Inner Mongolia, China College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing 100124, China)
出处 《化工学报》 EI CAS CSCD 北大核心 2017年第4期1499-1508,共10页 CIESC Journal
基金 国家自然科学基金项目(61364009 21466026 61640312) 内蒙古自治区自然科学基金项目(2015MS0615)~~
关键词 故障诊断 多尺度主元分析 核熵成分分析 冷水机组 fault diagnosis MSPCA KECA chillers
  • 相关文献

参考文献7

二级参考文献56

  • 1胡云鹏,陈焕新,周诚,杨小双,徐荣吉.基于主元分析法的冷水机组传感器故障检测效率分析[J].化工学报,2012,63(S2):85-88. 被引量:17
  • 2李中领,金宁,朱岩.人工神经网络应用于空调系统故障诊断的研究[J].制冷与空调,2005,5(1):50-53. 被引量:11
  • 3刘相艳,谷波,黎远光.基于并行感知器的制冷系统故障诊断分析[J].上海交通大学学报,2005,39(8):1233-1239. 被引量:10
  • 4王伟,姚杨,马最良.基于BP神经网络的压缩机性能预测模型的建立[J].流体机械,2005,33(9):21-24. 被引量:26
  • 5Venkatasubramanian V, Rengaswamy R, Kavuri S N. A review of process fault detection and diagnosis, part Ⅱ: qualitative models and search strategies. Computers and Chemical Engineering, 2003, 27(3): 313-326
  • 6Hyvarinen A, Oja E. Independent component analysis: algorithms and applications. Neural Network, 2000, 13(4-5): 411 - 430
  • 7Zou L, Zhu S A, He B. ICA-based EEG spatio-temporal dipole source localization: a model study. In: Proceedings of the 3rd International Symposium on Neural Networks. Chengdu, China: Springer, 2006. 566-572
  • 8Mantini D, Perrucci M G, Cugini S, Ferretti A, Romani G L, Gratta C D. Complete artifact removal for EEC recorded during continuous fMRI using independent component analysis. Neuroimage, 2007, 34(2): 598-607
  • 9Rennie S J, Aarabi P, Frey B J. Variational probabilistic speech separation using microphone arrays. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(1): 135-149
  • 10Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. American Institute of Chemical Engineers Journal, 2003, 49(4): 969-976

共引文献175

同被引文献66

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部