期刊文献+

基于非线性多向ICA的间歇过程监控方法研究 被引量:3

Monitoring Method Based on Nonlinear Multi-way ICA for Batch Process
原文传递
导出
摘要 针对间歇过程的非线性操作特性,提出一种非线性的多向独立成分分析(MICA)方法-基于特征样本的多向核独立成分分析(FS-MKICA)。该方法首先把正常工况下的间歇过程三维数据展开成二维,对输入的二维训练样本集进行特征样本提取,然后利用核函数完成从非线性特征样本输入空间到线性高维空间的转换,在变换后的线性高维空间中用独立成分分析(ICA)法提取独立成分构建模型。FS-MKICA不仅提取了过程的非线性特性,且避免了直接对全体输入样本建模,降低了计算复杂性。将FS-MKICA用于监视青霉素发酵过程,仿真结果验证了该方法是有效的。 Most batch processes generally exhibit the feature of nonlinear variation. A nonlinear multi-way independent component analysis (MICA) technique was proposed that is multi-way kernel independent component analysis based on feature samples (FS-MKICA) method. This approach first makes three-way datasets of normal batch processes unfolded to be two-way and then chooses feature samples from the large two-way input training datasets. The nonlinear feature space is then transformed to high-dimensional linear space via kernel function and independent component analysis (ICA) model is established in the linear space. FS-MKICA not only extracts the nonlinear feature of batch processes, but also reduces the computational cost based on whole input samples. The simulation results in monitoring fed-batch penicillin fermentation show that FS-MKICA method is effective.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第11期3365-3369,共5页 Journal of System Simulation
基金 国家863资助项目(2004AA412050) 山东省自然基金(Y2007G49)
关键词 间歇过程 非线性 特征样本 核函数 多向独立成分分析 batch processes nonlinearity feature samples kernel function multi-way independent component analysis
  • 相关文献

参考文献3

二级参考文献27

  • 1谢磊,何宁,王树青.步进MPCA及其在间歇过程监控中的应用[J].高校化学工程学报,2004,18(5):643-647. 被引量:8
  • 2蒋丽英,王树青.基于MPCA-MDPLS的间歇过程的故障诊断[J].化工学报,2005,56(3):482-486. 被引量:8
  • 3何宁,谢磊,郭明,王树青.基于独立成分的动态多变量过程的故障检测与诊断方法[J].化工学报,2005,56(4):646-652. 被引量:8
  • 4Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE J.,1994,40(8):1361-1375.
  • 5Chiang L H, Russel E L, Braatz R D. Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares and principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2000,50:243-252.
  • 6Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in industrial systems. London: Springer Verlag Press, 2001.
  • 7Chiang L H. Fault detection and diagnosis for large-scales systems: [dissertation](学位论文). Illinois: University of Illinois, 1999.
  • 8Geladi P, Kowalski B R. Partial least-squares regression: a tutorial.Analytica Chimica Acta, 1986,185:1-17.
  • 9Jiang Liying, Wang Shuqing. Monitoring and fault diagnosis of batch processes using multi-model fisher discriminant analysis.In:The 5th World Congress on Intelligent Control and Automation.Hangzhou:2004.1780-1784.
  • 10Cho Ji-Hoon,Lee Jong-Min,Wook Choi Sang,Lee Dongkwon,Lee In-Benm.Fault identification for process monitoring using kernel principal component analysis.Chemical Engineering Science,2005,60:279-288

共引文献88

同被引文献14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部