期刊文献+

基于MPCA-MDPLS的间歇过程的故障诊断 被引量:8

Fault diagnosis for batch processes based on MPCA-MDPLS
在线阅读 下载PDF
导出
摘要 针对间歇过程的故障诊断问题, 提出了一种新的混合模型方法———MPCA MDPLS. 这种方法包括两个模型: 多向主元分析 (MPCA) 模型和多向判别部分最小二乘 (MDPLS) 模型. 这两个模型的建模数据不仅包括正常工况的数据, 而且还包含了各种已知故障数据. 因此, MPCA模型具有检测未知故障的能力. 给出了 MD PLS模型故障诊断限, 对经MPCA模型检测不是未知故障的故障做进一步诊断. 如果故障是未知的, 可以采取其他的方法来分析新的故障, 并按不同类别存入到数据库中. 当多次出现这种故障之后 (一般≥5 次), 把新的故障数据加入到建模数据中, 并重新建立 MPCA -MDPLS模型. 通过对实际工业链霉素发酵过程数据的分析,表明了提出的算法是可行的、有效的, 并具有识别未知新故障的能力. In order to diagnose faults for batch processes, a novel method, MPCA-MDPLS model, is presented in this paper. The proposed method includes two models: MPCA (multiway principal component analysis) model and MDPLS (multiway discriminant partial least squares) model. Based on data collected from the plant during normal operation and specific faults, two models are constructed. The MPCA model can detect unknown faults. The faults, which are detected by using MPCA model as not unknown, further diagnosed by the MDPLS model. If it is identified as unknown, the root cause is analyzed by using various methods. The unknown fault is then saved in the historical database in order to reconstruct the MPCA-MDPLS model. The method is proved to be feasible and effective by the application in diagnosing a multi-stage streptomycin fermentation process.
出处 《化工学报》 EI CAS CSCD 北大核心 2005年第3期482-486,共5页 CIESC Journal
基金 国家高技术研究发展计划项目 (2001AA413110).~~
关键词 间歇过程 主元分析 判别部分最小二乘 故障诊断 Database systems Fermentation Identification (control systems) Least squares approximations Principal component analysis
  • 相关文献

参考文献7

  • 1陈元青,陈琦,王树青.多元统计分析方法在链霉素发酵中的应用[J].生物工程学报,1999,15(3):368-372. 被引量:9
  • 2Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE J.,1994,40(8):1361-1375.
  • 3Chiang L H, Russel E L, Braatz R D. Fault diagnosis in chemical processes using fisher discriminant analysis, discriminant partial least squares and principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2000,50:243-252.
  • 4Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in industrial systems. London: Springer Verlag Press, 2001.
  • 5Chiang L H. Fault detection and diagnosis for large-scales systems: [dissertation](学位论文). Illinois: University of Illinois, 1999.
  • 6Geladi P, Kowalski B R. Partial least-squares regression: a tutorial.Analytica Chimica Acta, 1986,185:1-17.
  • 7Jiang Liying, Wang Shuqing. Monitoring and fault diagnosis of batch processes using multi-model fisher discriminant analysis.In:The 5th World Congress on Intelligent Control and Automation.Hangzhou:2004.1780-1784.

二级参考文献3

  • 1方开泰.实用多元统计方法[M].上海:华东师范大学出版社,1986..
  • 2方开泰,实用多元统计分析,1986年
  • 3周纪芗,回归分析,1993年

共引文献8

同被引文献64

引证文献8

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部