期刊文献+

Fe(Ⅲ)介导下的香豆素-3-羧酸与牛血清白蛋白的相互作用 被引量:2

Interaction with Bovine Serum Albumin of coumarin-3-carboxylic acid in view of the influence by iron(Ⅲ)
在线阅读 下载PDF
导出
摘要 应用荧光光谱和紫外可见吸收光谱研究了Fe3+介导下的香豆素-3-羧酸(CCA)与牛血清白蛋白(BSA)间的相互作用,确定了Fe3+介导下的CCA对BSA的荧光猝灭过程.在此基础上测定了不同温度下该结合反应的结合常数,结合位点数,热力学参数等,依据能量转移理论确定了CCA和BSA间的结合距离,采用同步荧光技术考察了CCA对BSA构象的影响,并讨论了CCA与BSA的结合模式.结果表明CCA对BSA是动态猝灭过程,结合反应主要是熵驱动,主要作用力是疏水力,香豆素-3-羧酸-Fe3+的加入并未使BSA的构象发生变化. In view of the influence by iron(Ⅲ ), the binding between coumarin 3 carbox- ylic acid and Bovine Serum Albumin(BSA) was investigated by fluorescence spectrum and UV spectrum,CCA to BSA fluorescence quenching process in view of the influence by iron(Ⅱ)is proved. The binding constant, the number of binding sites n and thermo- dynamic parameters were measured at different temperatures by fluorescence quenching method. The binding distance between coumarin-3-carboxylic acid and BSA was also ob- tained according to Forster theory of non-radiation energy transfer. The effect of couma- rin 3 carboxylic acid on the conformation of BSA has also been analyzed using synchro- nous fluorescence spectroscopy and the binding mode between coumarin-3-carboxylic acid and BSA was discussed. Experimental results showed that the quenching mecha- nism is dynamic quenching procedure. The binding reaction is mainly entropy drive, the main force is hydrophobic hydraulic, coumarin-3 carboxylic acid-Fe3+ to join BSA did not make the conformational change.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2013年第4期509-513,518,共6页 Journal of Central China Normal University:Natural Sciences
基金 湖北省自然科学基金项目(2009CDB317) 咸宁学院青年项目(KY11068)
关键词 香豆素-3-羧酸 Fe3+离子 牛血清白蛋白 荧光猝灭 热力学参数 coumarin-3-carboxylic acid iron(Ⅲ) Bovine Serum Albumin fluorescence quenching thermodynamic parameters
  • 相关文献

参考文献13

二级参考文献82

共引文献262

同被引文献21

  • 1郭应臣,陈欣,卓立宏.水杨酰肼Schiff碱的合成、表征及抑菌活性[J].化学研究与应用,2004,16(4):580-582. 被引量:22
  • 2朱东霞,王悦,邵奎占,赵雅辉,苏忠民.双水杨醛缩环己二胺类西佛碱及其配合物的合成、性质研究[J].分子科学学报,2004,20(3):12-17. 被引量:11
  • 3孟庆金,戴安邦.配位化学的创始与现代化[M].北京:高等教育出版社,1999.76-80.
  • 4Ratte H T. Bioaccumulation and toxicity of silver compounds: a review[J]. Environ Toxicol Chem, 1999, 18( 1 ): 89-108.
  • 5Barriada J L, Tappin A D, Evans E H, et al. Dissolved silver measure-ments in seawater [Jl. Trends Anal Chem, 2007,26: 809-817.
  • 6Liau S, Read D, Pugh W, et al. Interaction of silver nitrate with readily identifiable groups: relationship to the anti- bacterialaction of silver ions [J]. Lett Appl Microbiol, 1997,25: 279-283.
  • 7Carlson C, Hussain S, Schrand A, et al. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species[J]. J Phys Chem B,2008,112(43): 13608-13619.
  • 8Sung Y M, Wu S P. Highly selective and sensitive colorimetric detection of Ag(I) using N-I- (2- mercapto- ethyl)adenine functionalized gold nanoparticles [ J ]. Sensors and Actuators B: Chemical, 2014,197 ( 1 ): 172-176.
  • 9Hosoba M, Oshita K, Katarina R K, et al. Synthesis of novel chitosan resin possessing histidine moiety and its application to the determination of trace silver by ICP-AES coupled with triplet automatedpretreatment system [J ]. Anal Chim Acta, 2009, 639(1): 51-56.
  • 10Zhang X B, Han Z X, Fang Z H, et al. 5,10, 15-Tris (pentaflu-orophenyl) eorrole as highly selective neutral carrier for a silver ion-sensitive electrode [ J ]. Anal Chim Acta, 2006,562 (2): 210-215.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部