期刊文献+

用模拟退火思想的粒子群算法实现图像分割 被引量:5

Image Segmentation Through Particle Swarm Optimization Based on Simulated Annealing
在线阅读 下载PDF
导出
摘要 采用了一种模拟退火思想的粒子群算法与最大类间方差法相结合的快速阈值分割法对图像进行分割。用粒子群优化算法来搜索阈值向量,每个粒子代表一个可行的阈值向量,通过粒子间的协作来获得最优阈值。为了提高收敛速度,把模拟退火的思想应用在粒子群算法中,最后仿真结论表明,该方法在继承标准粒子群算法原理简单、易于实现、协同搜索等优点的同时,还避免了标准粒子群算法的收敛速度慢问题,有更强的寻优能力,得到理想的结果的同时计算量大大减少。权衡分割精度和计算效率两个方面,文中方法不失为一种实用有效的图像分割算法。 A rapid Otsu's method based on simulated annealing particle swarm optimization algorithm was used for image segmentation.Particle Swarm Optimization(PSO) algorithm was used to search threshold vectors.Each particle represents a feasible threshold vector.Thus,the optimal threshold could be acquired by the cooperation of particle swarm.To get better convergence,simulated annealing idea was applied in PSO algorithm.Simulation experiment results demonstrated that this method retains the uncomplicated principle,simple-operation and coevolutionary search of standard PSO,and also solves the slow convergence problem of standard PSO,could acquire ideal results with less computation.The algorithm is practical and effective in image segmentation considering segmentation accuracy and computing efficiency.
出处 《计算机技术与发展》 2010年第5期83-87,91,共6页 Computer Technology and Development
基金 国家自然科学基金项目(50407017) 安徽省自然科学基金重点项目(2006KJ019A 2007KJ052A)
关键词 模拟退火 粒子群算法 最大类间方差法 阈值分割 simulated annealing particle swarm optimization Otsu threshold segmentation
  • 相关文献

参考文献12

二级参考文献38

共引文献564

同被引文献55

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:234
  • 2吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(二)[J].数据采集与处理,1993,8(4):268-282. 被引量:96
  • 3Pal N R,Pal S K.A Review on Image Segmentation Techniques[J].Pattern Recognition,1993,26(9): 1277-1294.
  • 4Haralick R M,Shapiro L G..Image Segmentation Techniques[J].CVGIP,1985,29(1): 100-132.
  • 5Muller S D,Marchetto J,Airaghi S,et al.Optimization Based on Bacterial Chemotaxis[J].IEEE Transactions on Evolutionary Computation,2002,6(1): 16-29.
  • 6Ostu N.A Threshold Selection Method from Gray Level Histog- ram[J].IEEE Trans.on System,Man and Cybernetics,1979,9(1): 62-66.
  • 7Eberhart R, Kennedy J. A new optimizer using particle swarm theory[ C]//Proc of 6th Int Syrup Micro Machine and Human Science. [ s. 1. ] : [ s. n. ].
  • 8Kennedy J, Eberhart R C. Particle swarm optimization [ C ]/// Proc of IEEE Int Conf on Neural Networks. [ s. I. ] : [ s. n. ], 1995 : 1942-1948.
  • 9Binkley K J, Hagiwara M. Particle swarm op- timization with area of influence: increasing the effectiveness of swarm[ C ]// Proceeding of the IEEE Swarm Intelligence Symposium. [s.l. ] :[s.n. ] ,2005.
  • 10Metropolis N, Rosenbluth A, Rosenbluth M, et al. Equation of state calculations by fast computing machines [ J ]. Journal of Chemi- cal Physics, 1953,21 (6) : 1087-1092.

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部