摘要
在系统辨识理论的实际应用中根据不同的对象和建模的不同目的去选择合适的辨识算法是一件不容易的事。针对非线性系统模型的多样性,提出了适应于多种不同模型的基于复合微粒群优化算法(HPSO)的系统参数估计方法,并对多种模型实例进行了仿真研究。实验结果表明,该算法是一种有效的系统模型参数估计方法。
In the practice application of identification theory, it is difficult to select an appropriate identification algorithm for different object and different model building purpose. Aiming at the variety of nonlinear systems models, a general system model estimation method based on hybrid particles swarm optimization algorithm (HPSO) was proposed. Simulations were done for different model examples. The experiment results show that particles swarm optimization is an effective method for parameter estimation of system model.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2006年第7期1942-1945,共4页
Journal of System Simulation
基金
国家自然科学基金(60375001)
高校博士点基金项目(20030532004)资助