期刊文献+

一种改进的粒子群优化算法 被引量:29

Novel Arithmetic Based on Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 针对非线性优化问题讨论了一种基于迭代进程和适应值综合的自适应变异粒子群优化算法,该算法按照自适应变异方法从迭代进程上、以及从目标函数适应值上调整速度惯性因子,同时结合正态变异算子调整搜索方向。采用专用测试函数进行仿真测试分析,结果表明改进算法收敛,具有很高的搜索效率和求解精度。 A novel arithmetic was proposed based on particle swarm optimization (PSO), which concentrated the advantages of the successive recurs'ion process of adaptive mutation and the fitness of adaptive mutation. And the normal mutation arithmetic was also used to adjust the searching direction. Special functions were used to verify the stability and response speed of the arithmetic. The simulation results show that the nonlinear optimizing problem with the objective model functions can be solved with high searching efficiency and solution accuracy under the proposed method.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第21期4922-4925,共4页 Journal of System Simulation
基金 湖南省自然科学基金(06JJ5112) 湘潭大学跨学科交叉项目(05IND04)
关键词 粒子群优化 自适应变异 正态变异 非线性优化问题 particle swarm optimization adaptive mutation normal mutation nonlinear optimization problem
  • 相关文献

参考文献12

  • 1James Kennedy, Russell Eberhart. Particle Swarm Optimization [C]// Proc IEEE, International Conference on Neural Networks, Perth, Australia: IEEE Computational Intelligence Society, 1995: 1942-1948.
  • 2谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:424
  • 3Chunming Yang, Dan Simon. A New Particle Swarm Optimization Technique [C]// Proceedings of the 18th international Conference on Systems Engineering (ISCEng'05). Washington, DC, USA: IEEE Computer Society, 2005.
  • 4刘良兵,吴方才,黄樟灿.基于立队竞争的演化算法[J].武汉大学学报(理学版),2003,49(3):323-326. 被引量:8
  • 5Daniel Parrott, Xiaodong Li. A Particle Swarm Model for Tracking Multiple Peaks in a Dynamic Environment using Speciation. Proceeding of the 2004 Congress on Evolutionary Computation (CEC'04). Piscataway, N J: IEEE Service Center, 2004: 98-103.
  • 6Fang Wang, Yuhui Qiu, Empirical Study of Hybrid Particle Swarm Optimizers with the Simplex Method Operator [C]// Proceedings of the 5th international Conference on Intelligent Systems Design and Application (ISDA'05). Warsaw, Poland: Springer, 2005.
  • 7Angel E Zavala, Arturo Hernandez Aguirre. Particle Evolutionary Swarm Optimization Algorithm (PESO) [C]// Proceedings of the Sixth Mexican International Conference on Computer Science (ENC'05). Washington DC USA: IEEE Computer Society, 2005: 282-289.
  • 8Xiaodong Li. Adaptively Choosing Neighborhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization [C]// Genetic and Evolutionary Computation Conference, Seattle, WA. USA: Springer, 2004:105-116.
  • 9SHANG Yun-peng, XIE Xu-dong, Wang Xing-xiang, etc., A novel splice mutation of HERG in a Chinese family with long QT syndrome[J]. Zhejiang Univ SCI., 2005, 6B(7): 626-630.
  • 10Christopher K Monson, Kevin D Seppi. A New Approach to Particle Motion in Swarm Optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference(GECCO), Seattle, WA. USA: Springer, 2004: 140-150.

二级参考文献60

  • 1章优仕,金炜东.基于遗传算法的单线列车运行调整体系[J].西南交通大学学报,2005,40(2):147-152. 被引量:25
  • 2董守清,王进勇,闫海峰.双线铁路列车运行调整的禁忌搜索算法[J].中国铁道科学,2005,26(4):114-119. 被引量:18
  • 3[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 4[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 5[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 6[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 7[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 8[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 9[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 10[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.

共引文献443

同被引文献303

引证文献29

二级引证文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部