期刊文献+

复映射z←z^w+c(w=α+iβ)构造J分形图 被引量:7

J FRACTAL IMAGES CONSTRUCTED FROM COMPLEX MAPPING z←z w+c(w=α+iβ)
在线阅读 下载PDF
导出
摘要 提出用复映射z←zw+c,(w=α+iβ,α,β∈R1),构造大量J分形图.当w=α<0时,构造出不同于相关文献的Julia分形图.根据大量实验,提出关于该映射参数平面上的M集与动力平面上的Julia集之间对应关系的M-J猜想及计算公式PNO。 The complex mapping z←z w+c,(w=α+iβ,α,β∈R 1 ) is used to construct many J fractal images. For w=α<0 , the Julia fractal images which are different from those in references concerned are generated. Based on a great number of experiments, an M J conjecture and a formula PNO for investigating corresponding relationship between the M set in the C plane and J set in the Z plane are presented to predict the image features of the J fractal image for a parameter c in the M set.
作者 陈宁 朱伟勇
出处 《计算机研究与发展》 EI CSCD 北大核心 1998年第11期1020-1023,共4页 Journal of Computer Research and Development
基金 辽宁省自然科学基金 沈阳21世纪青年基金
关键词 分形 分形图 复映射 fractal, fractal image, complex mappingClass number TP391.4
  • 相关文献

参考文献1

共引文献25

同被引文献29

  • 1徐卫国.非线性建筑设计[J].建筑学报,2005(12):32-35. 被引量:60
  • 2陈宁,张丽丽.复幂指数映射M-J对应关系及充满J集中相似结构特性[J].沈阳建筑大学学报(自然科学版),2007,23(2):332-336. 被引量:2
  • 3陈宁,朱伟勇.复映射{e^i_ 2~π(z^m)+c}构造广义Mandelbrot集及Julia集[J].计算机研究与发展,1997,34(5):393-396. 被引量:6
  • 4Chen Ning, Zhu X L and Chung K W. M and J sets from Newton's Transformation of the Transcendental Mapping F( z ) = e^z^w +c with VCPS[J]. Computers & Graphics, 2002, 26(2) :371 - 383.
  • 5Chen Ning, Zhu Weiyong, Bud-seclunce conjecture on m fractal image and M-J conjecture between c and z planes from z←z^w + c(w = a + iβ)[J]. Computer & Graphics, 1998,22(4) :537 - 546.
  • 6Chung K W, Chan H S Y, Chen Ning. General Mandelbrot Sets and Julia Sets with color symmetry from equivalent mappings of the modular group [ J ]. Computer & Graphics, 2000, 24(6) :911 - 918,.
  • 7Carter N, Eagles R, Grimes S, et al. Chaotic attractors with discrete planar symmetries [ J ]. Chaos Solitions and Fractals, 1998, 9(12) : 2031 - 2054.
  • 8Sprott J C. Automatic generation of strange attractors[J]. Computers and Graphics, 1993(17) :325 - 332.
  • 9Field M and Golubitsky M. Symmetry in Chaos[ M]. New York: Oxford University Press, 1992.
  • 10Jones D J.Three unconventional representations of the Mandelbrot set [J].Computers & Graphics,1990,14(1):127- 129.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部