期刊文献+

上半平面极限映射的混沌吸引子及充满Julia集 被引量:2

Chaotic Attractors and Generalized Filled-in Julia Sets from Mapping with Upper Halfplane Limit and Square Limit
在线阅读 下载PDF
导出
摘要 目的旨在大量生成上半平面极限映射的混沌吸引子及充满Julia集图案.方法分析上半平面极限映射的特点,运用蒙特卡罗搜索法随机搜索参数,通过李雅普诺夫指数判断其动力学特性,构造上半平面极限映射的混沌吸引子及广义充满Julia集.结果运用李雅普诺夫指数测试选定参数下映射的动力学特性,实现了上半平面极限映射的混沌吸引子及广义充满Julia集图案的大量生成.结论根据选定参数下动力系统在动力平面上的轨道特性,可以有效生成上半平面极限映射的混沌吸引子及广义充满Julia集图案. The purpose of this paper is automatically to generate the patterns of chaotic attractors and generalized filled - in Julia sets from mapping with upper halfplane limit and square limit. Monte Carlo method is employed to search the parameter vectors from parameter space of dynamic system of equivalent mapping which is adopted in this paper. Lyapunov exponent is used to judge the characters of the related dynamical system with the parameter vectors which are chosen randomly. In this paper, the calculation of Lyapunov exponent is restricted in the fundamental region, which is a square area. The filled - in Julia sets of the mapping are constructed based on the attracting fields of dynamical system with the parameter vetors which make Lyapunov exponent negative. On the contrary, we choose the parameter vectors which make Lyapunov exponent positive to generate chaotic attractors. In this way, lots of chaotic attractors and filled - in Julia sets from the mappings with upper halflane limit and square limit can be effectively generated. So, abundant dynamical images, which are contained in the related dynamical systems, are developed.
出处 《沈阳建筑大学学报(自然科学版)》 EI CAS 2006年第5期846-851,共6页 Journal of Shenyang Jianzhu University:Natural Science
基金 辽宁省自然科学基金(20032005) 沈阳市科技局基金(200143-01)
关键词 混沌 吸引子 充满JULIA集 上半平面极限映射 chaos attractor filled - in Julia set
  • 相关文献

参考文献10

  • 1Escher M C.Escher on Escher:Exploring the Infinite[M].New York:Harry N.Abrams,1989.
  • 2Armstrong A M.Groups and Symmetry[M].New York:Springer,1998.
  • 3Chung K W,Chan H S Y,Wang B N.Hyperbolic symmetries from dynamics[J].Computer and Mathematics with Applications,1996,31(2):33-47.
  • 4Chung K W,Chan H S Y,Wang B N.Tessellations with the modular group from dynamics[J].Computers & Graphics,1997,21(4):523-534.
  • 5陈宁.复映射z←e^(i(π/2))+c构造上半平面分形图及“Escher”极限图[J].计算机研究与发展,2000,37(2):213-217. 被引量:7
  • 6Chung K W,Chan H S Y,Wang B N.Smaller and smaller from dynamics[J].Computers & Graphics,1998,22(4):527-536.
  • 7Sprott J C.Automatic generation of strange attractors[J].Computers & Graphics,1993,17 (3):325 -332.
  • 8Field M and Golubitsky M.Symmetry in Chaos[M].New York:Oxford University Press,1992.
  • 9陈宁,王凤英.FRIEZE群等价映射动力系统广义充满Julia集[J].沈阳建筑工程学院学报(自然科学版),2004,20(1):71-74. 被引量:1
  • 10Chen N,Zhu X L and Chung K W.M AND J sets from Newton's Transformation of the Transcendental Mapping with VCPS[J].Computers & Graphics,2002,26(2):371-383.

二级参考文献11

  • 1Chen Ning, Zhu X L and Chung K W. M and J sets from Newton's Transformation of the Transcendental Mapping F( z ) = e^z^w +c with VCPS[J]. Computers & Graphics, 2002, 26(2) :371 - 383.
  • 2Chen Ning, Zhu Weiyong, Bud-seclunce conjecture on m fractal image and M-J conjecture between c and z planes from z←z^w + c(w = a + iβ)[J]. Computer & Graphics, 1998,22(4) :537 - 546.
  • 3Chung K W, Chan H S Y, Chen Ning. General Mandelbrot Sets and Julia Sets with color symmetry from equivalent mappings of the modular group [ J ]. Computer & Graphics, 2000, 24(6) :911 - 918,.
  • 4Carter N, Eagles R, Grimes S, et al. Chaotic attractors with discrete planar symmetries [ J ]. Chaos Solitions and Fractals, 1998, 9(12) : 2031 - 2054.
  • 5Sprott J C. Automatic generation of strange attractors[J]. Computers and Graphics, 1993(17) :325 - 332.
  • 6Field M and Golubitsky M. Symmetry in Chaos[ M]. New York: Oxford University Press, 1992.
  • 7Chen Ning,Computers Graphics,1998年,22卷,4期,537页
  • 8Chung K W,Computers Graphics,1998年,22卷,4期,527页
  • 9陈宁,M -J混沌分形图谱,1998年
  • 10陈宁,朱伟勇.复映射z←zw+c(w=α+iβ)构造M集[J].计算机研究与发展,1997,34(12):899-907. 被引量:26

共引文献6

同被引文献8

  • 1陈宁,李子川,金媛媛.双曲极限圆映射的混沌吸引子及充满Julia集[J].沈阳建筑大学学报(自然科学版),2006,22(6):999-1003. 被引量:4
  • 2Escher M C. Escher on Escher. Exploring the infinite [ M]. New York: Harry N. Abrams, 1989.
  • 3Armstrong A M. Groups and symmetry [ M ]. New York: Springer, 1998.
  • 4Field M,Golubitsky M. Symmetry in chaos[ M]. New York:Oxford University Press, 1992.
  • 5Carter N, Eagles R, Grimes S. Chaotic attractors with discrete planar symmetries [ J ]. Chaos Solitions and Fractals, 1998,20 (9) : 31 - 54.
  • 6Sprott J C. Automatic generation of strange attractors [J ]. Computers & Graphics, 1993,17(3) : 25 - 32.
  • 7Reiter C A. Fractal, visualization and J [ M]. Toronto: Jsoftware, Inc. , 2000.
  • 8Ning Chen, Meng F Y. Critical points and dynamic systems with planar hexagonal symmetry [J ]. Chaos, Solitons & Fractals,2007(3) : 1027 - 1037.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部