期刊文献+

Effects of Ginsenoside Rg1 on nuclear factor-kappa B activity in beta amyloid protein-treated neural cells 被引量:2

Effects of Ginsenoside Rg1 on nuclear factor-kappa B activity in beta amyloid protein-treated neural cells
暂未订购
导出
摘要 BACKGROUND: Modern pharmacological studies have shown that Ginsenoside Rgl is one of the active components of ginseng that promote intelligence in the nervous system. Ginsenoside Rgl can improve memory and learning in mouse models of β-amyloid protein (Aβ)-induced dementia. OBJECTIVE: To investigate whether effects of Ginsenoside Rgl against Aβ are associated with activity of nuclear factor-kappa B (NF-κB). DESIGN, TIME AND SETTING: The randomized performed at the DME Center, Institute of Clinica controlled, cell biological experiment was Pharmacology, Guangzhou University of Chinese Medicine, China from July 2005 to May 2006. MATERIALS: Beta-amyloid fragment 25-35 (Aβ25-35) was supplied by the Neural Biochemical Laboratory, Xuanwu Hospital, Capital Medical University, China. Ginsenoside Rgl was obtained from National Institute for the Control of Pharmaceutical and Biological Products, China. Rabbit anti-rat NF-κB p65 antibody was purchased from Santa Cruz Biotechnology, USA. METHODS: Hippocampal neurons and cortical astrocytes of neonatal Sprague Dawley rats were harvested and treated with various concentrations (0, 5, 10, 20, and 40 μmol/L) of Aβ for 6, 12, and 24 hours to establish cellular models of Alzheimer's disease. Cellular models were pretreated with various concentrations of Ginsenoside Rgl (1,2, 4, 8, and 16 μmol/L). According to cell morphology and activity, the following conditions were selected: 40 μmol/L Aβ for 24 hours, as well as 2, 4, and 8 μmol/L Ginsenoside Rg1. NF-κB activity was observed using immunofluorescence and cytochemical staining. MAIN OUTCOME MEASURES: Morphology and viability of hippocampal neurons and cortical astrocytes, and activities of NF-κB were measured. RESULTS: Hippocampal neuron activity was significantly greater in the normal and 2 and 4 μmol/L Ginsenoside Rgl groups compared with the model group (P 〈 0.05). Astrocyte activity was significantly greater in the normal, 1,2, 4, 8, and 16 μmol/L Ginsenoside Rgl groups compared with the model group (P 〈 0.05). NF-κB activity of hippocampal neurons was significantly greater in the normal, 2, 4, and 8 μmol/L Ginsenoside Rgl groups compared with the model group (P 〈 0.01). NF-κB activity of astrocytes was significantly less in the normal, 2, 4, and 8 μmol/L Ginsenoside Rgl groups compared with the model group (P 〈 0.01 or P 〈 0.05). No significant difference in NF-κB activity was determined between the 2 μmol/L Ginsenoside Rgl and normal groups (P 〉 0.05). CONCLUSION: Ginsenoside Rgl protected neural cells by upregulating NF-κB activity in neurons and downregulating NF-κB activity in astrocytes. Ginsenoside Rgl (2 μmol/L) maintained cell activity and NF-κB activity at normal levels. BACKGROUND: Modern pharmacological studies have shown that Ginsenoside Rgl is one of the active components of ginseng that promote intelligence in the nervous system. Ginsenoside Rgl can improve memory and learning in mouse models of β-amyloid protein (Aβ)-induced dementia. OBJECTIVE: To investigate whether effects of Ginsenoside Rgl against Aβ are associated with activity of nuclear factor-kappa B (NF-κB). DESIGN, TIME AND SETTING: The randomized performed at the DME Center, Institute of Clinica controlled, cell biological experiment was Pharmacology, Guangzhou University of Chinese Medicine, China from July 2005 to May 2006. MATERIALS: Beta-amyloid fragment 25-35 (Aβ25-35) was supplied by the Neural Biochemical Laboratory, Xuanwu Hospital, Capital Medical University, China. Ginsenoside Rgl was obtained from National Institute for the Control of Pharmaceutical and Biological Products, China. Rabbit anti-rat NF-κB p65 antibody was purchased from Santa Cruz Biotechnology, USA. METHODS: Hippocampal neurons and cortical astrocytes of neonatal Sprague Dawley rats were harvested and treated with various concentrations (0, 5, 10, 20, and 40 μmol/L) of Aβ for 6, 12, and 24 hours to establish cellular models of Alzheimer's disease. Cellular models were pretreated with various concentrations of Ginsenoside Rgl (1,2, 4, 8, and 16 μmol/L). According to cell morphology and activity, the following conditions were selected: 40 μmol/L Aβ for 24 hours, as well as 2, 4, and 8 μmol/L Ginsenoside Rg1. NF-κB activity was observed using immunofluorescence and cytochemical staining. MAIN OUTCOME MEASURES: Morphology and viability of hippocampal neurons and cortical astrocytes, and activities of NF-κB were measured. RESULTS: Hippocampal neuron activity was significantly greater in the normal and 2 and 4 μmol/L Ginsenoside Rgl groups compared with the model group (P 〈 0.05). Astrocyte activity was significantly greater in the normal, 1,2, 4, 8, and 16 μmol/L Ginsenoside Rgl groups compared with the model group (P 〈 0.05). NF-κB activity of hippocampal neurons was significantly greater in the normal, 2, 4, and 8 μmol/L Ginsenoside Rgl groups compared with the model group (P 〈 0.01). NF-κB activity of astrocytes was significantly less in the normal, 2, 4, and 8 μmol/L Ginsenoside Rgl groups compared with the model group (P 〈 0.01 or P 〈 0.05). No significant difference in NF-κB activity was determined between the 2 μmol/L Ginsenoside Rgl and normal groups (P 〉 0.05). CONCLUSION: Ginsenoside Rgl protected neural cells by upregulating NF-κB activity in neurons and downregulating NF-κB activity in astrocytes. Ginsenoside Rgl (2 μmol/L) maintained cell activity and NF-κB activity at normal levels.
机构地区 DME Center
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第8期590-596,共7页 中国神经再生研究(英文版)
基金 the Natural Science Foundation of Guangdong Province,No. 031479
关键词 Ginsenoside Rgl Alzheimer's disease β-amyloid protein nuclear factor-κB NEUROPROTECTION Ginsenoside Rgl Alzheimer's disease β-amyloid protein nuclear factor-κB neuroprotection
  • 相关文献

参考文献5

二级参考文献33

共引文献265

同被引文献18

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部