期刊文献+

基于数据和知识的工业过程监视及故障诊断综述 被引量:73

Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process
原文传递
导出
摘要 从复杂工业过程所可能具有的过程特性及数据存取过程中引入的数据特性分析出发,综述了具有复杂数据特性的工业过程的多元统计监视方法,并分别讨论了基于数据和基于知识方法进行故障诊断的优势、进展、适用范围及二者结合的可能.最后探讨了这一领域中值得进一步研究的问题和可能的发展方向. Based on the analysis of complex data characteristics due to the process characteristics or the data collection and storage problem,the developments of theory the researches on complex industry process multivariate statistical monitoring are reviewed.The advantages,development,applicable domain of the data-based and knowledge-based diagnosis methods are discussed.And the possibility of these two types of methods' combination are studied.Finally,some problems and their research tendencies in this field are presented.
出处 《控制与决策》 EI CSCD 北大核心 2010年第6期801-807,813,共8页 Control and Decision
基金 国家重点基础研究发展计划项目(2009CB320600) 高等学校学科创新引智计划项目(B08015) 教育部科学技术研究重大项目(308007) 国家863计划项目(2006AA040307)
关键词 多元统计过程监视 基于数据的诊断 基于知识的诊断 工业过程 Multivariate statistical process monitoring Data-based fault diagnosis Knowledge-based fault diagnosis Industry process
  • 相关文献

参考文献53

  • 1Kano M, Nakagawa Y. Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry[J]. Computers & Chemical Engineering, 2008, 32(1/2): 12- 24.
  • 2Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers & Chemical Engineering, 2002, 26(2): 161- 174.
  • 3Qin S J, Valle S, Piovoso M J. On unifying multiblock analysis with application to decentralized process monitoring[J]. J of Chemometrics, 2001, 15(9): 715-742.
  • 4Qin S J, Cherry G, Good R, et al. Semiconductor manufacturing process control and monitoring: A fab-wide framework[J]. J of Process Control, 2006, 16(3): 179-191.
  • 5Zhang Y, Dudzic M S. Online monitoring of steel casting processes using multivariate statistical technologies: From continuous to transitional operations[J]. J of Process Control, 2006, 16(8): 819-829.
  • 6Undey C, Tatara E, Cinar A. Real-time batch process supervision by integrated knowledge-based systems and multivariate statistical methods[J]. Engineering Applications of Artificial Intelligence, 2003, 16(5/6): 555- 566.
  • 7Desborough L, Harris T. Performance assessment measures for univariate feedback control[J]. J of Chemical Engineering, 1992, 70(6): 262-268.
  • 8Kesavan P, Lee J H. Diagnostic tools for multivariable model-based control systems[J]. Industial Engineering Chemistry Research, 1993, 36(7): 2725-2738.
  • 9Dunia R, Qin S J, Edgar T F, et al. Identification of faulty sensors using principl component analysis[J]. AIChE J, 1996, 42(10): 2797-2812.
  • 10Qin S J. Statistical process monitoring: Basics and beyond[J]. J of Chemometrics, 2003, 17(8/9): 480-502.

二级参考文献43

共引文献131

同被引文献810

引证文献73

二级引证文献595

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部