期刊文献+

基于核独立元分析的间歇过程在线监控 被引量:12

Online batch process monitoring based on kernel ICA
在线阅读 下载PDF
导出
摘要 针对间歇过程独特的数据特点,提出了一种基于核独立元分析(kernelICA)的局部在线建模监控方法。核独立元分析通过规范相关性将比较函数扩展到一个再生的核希尔伯特空间,并用核的方法在此空间对比较函数进行计算和寻优。对含有多种分布的过程源数据,核独立元分析是一种比独立元分析(ICA)更有效的特征提取方法。对于按批次方向展开的间歇过程历史建模数据,在每一个时间间隔点应用核独立元分析算法提取独立元用于建模,并计算I2和SPE统计量及相应的控制限。此方法不需要对未来测量值进行估计,更重要的是解决了核独立元分析不能直接处理间歇过程高维历史建模数据的难题。仿真结果验证了所提出方法的可行性和有效性,并显示出比传统MICA更好的监控效果。 A novel batch process monitoring approach based on kernel independent component analysis(kernel ICA)and local modeling was proposed.Kernel ICA is an improved independent component analysis(ICA).It uses contrast functions based on canonical correlations in a reproducing kernel Hilbert space,and uses kernel trick to compute and optimize the contrast functions in this space.Consequently,kernel ICA is more efficient than ICA for varying source distributions.For the batch-wise unfolding normal batch process data,kernel ICA was employed to extract independent components at every time interval,and calculate the I2 and SPE statistics and their control limits.This modeling method did not need to predict the future observations,and the more important was that it could handle the problem of kernel ICA with the high dimension historical normal data.The simulation results showed the feasibility and efficiency of the new method,and the advantages of kernel ICA over conventional MICA method.
作者 王丽 侍洪波
出处 《化工学报》 EI CAS CSCD 北大核心 2010年第5期1183-1189,共7页 CIESC Journal
基金 上海市重点学科建设项目(B504) 化工过程先进控制和优化技术教育部重点实验室~~
关键词 间歇过程 过程监测 局部模型 核独立元分析 batch process process monitoring local models kernel ICA
  • 相关文献

参考文献17

  • 1Nomikos P, MacGregor J F. Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994, 40 (8): 1361-1375.
  • 2Nomikos P, MacGregor J F. Multivariate SPC charts for monitoring batch processes. Technometrics, 1995, 37 (1) : 41-59.
  • 3Nomikos P, MacGregor J F. Multi way partial least squares in monitoring batch processes. Chemometrics and Intelligent Laboratory Systems, 1995, 30 (1) : 97- 108.
  • 4Chen J, Liu K C. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical Engineering Science, 2002, 57 (1): 63-75.
  • 5Bakshi B R. Multiscale PCA with application to multivariate statistical process monitoring. AIChE Journal, 1998, 44 (7):1596 -1610.
  • 6LiW H, Yue H H, Valle-Cervants S, Qin S J. Rrcursive PCA for adaptive process monitoring. Journal of Process Control, 2000, 10 (5): 471-486.
  • 7Wang D, Romagnoli J A. Robust multi-scale principal components analysis with applications to process monitoring. Journal of Process Control, 2005, 15 (8) : 869 -882.
  • 8谢磊,何宁,王树青.步进MPCA及其在间歇过程监控中的应用[J].高校化学工程学报,2004,18(5):643-647. 被引量:8
  • 9Lu N, Gao F, Wang F. PCA based modeling and on line monitoring strategy for uneven-length batch processes. Industrial and Engineering Chemistry Research, 2004, 43 (13): 3343-3352.
  • 10Yoo CK, LeeJ M, Vanrolleghem P A, Lee I B. On line monitoring of batch processes using multiway independent component analysis. Chemometrics and Intelligent Laboratory Systems, 2004, 71:151-163.

二级参考文献19

  • 1郭明,王树青.基于独立分量分析的系统性能监控方法研究[J].浙江大学学报(工学版),2004,38(6):665-669. 被引量:12
  • 2Rannar S, MacGregor J F. Adaptive batch monitoring using hierarchical PCA [J]. Chemometrics Intell Lab Syst, 1998, 30: 73-81.
  • 3Jolliffe I T. Principal Component Analysis [M]. New York: Springer-Verlag, 1986.
  • 4Jackson J E. A User's Guide to Principal Components [M]. New York: Wiley Inter-science, 1991.
  • 5Nomikos P, MacGregor J F. Monitoring of batch processes using multi-way principal components analysis [J]. Am Inst Chem Eng, 1994, 40: 1361-1375.
  • 6Nomikos P, MacGregor J F. Multivariate SPC charts for batch processes [J]. Technometrics, 1995, 37: 41-59.
  • 7Chiang L H, Russell E L, Braatz R D. Fault detection and diagnosis in industrial systems. London: Springer- Verlag, 2001.
  • 8Hyvarinen A, Oja E, Independent component analysis: algorithms and applications. Neural Network, 2000, 13: 411-430.
  • 9Kano M, Tanaka S, Hasebe S, Hashimoto I, Ohno H. Monitoring independent components for fault detection. AIChE Journal, 2003, 49 (4):969-976.
  • 10Choi S W, Martin E B, Morris A J, Lee I B. Adaptive multivariate statistical process control for monitoring timevarying processes. Ind. Eng. Chem. Res. , 2006, 45: 3108-3118.

共引文献13

同被引文献102

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部