期刊文献+

DBN结构学习度量分解性能分析

Study on metric decomposition for DBN structure learning
在线阅读 下载PDF
导出
摘要 针对动态贝叶斯网络(DBN)结构学习中涉及的度量分解问题,提出了DBN度量分解后的相关性能。首先,细化了DBN的贝叶斯信息度量(BIC)及贝叶斯-狄里克莱(BD)度量公式,通过表达式的分析,讨论了分解后的相关性质,进而提出了由分解公式提供给DBN结构学习的相关性能。其次,通过设计的性能分析仿真实验,验证了提出的若干设想,即将BN结构学习算法移植到DBN结构学习的可行性及分解降低算法复杂度等问题,并提出了寻找DBN快速结构学习算法的有效思路。 Some correlative properties on dynamic Bayesian networks(DBN) structure metric decomposition for DBN structure learning are proposed. Firstly, DBN's Bayesian information matric(BIC) and Bayesian-Dirichlet metric (BD) decomposition formula are further divided into two parts. Some characters are discussed based on the decomposition formula, and more useful properties are developed. Secondly, a simulation model is designed to verified properties. The properties include two problems, one is the transplantation problem that many static state Bayesian networks(BN) structure learning algorithm can be used to DBN structure learning, the other is computation complexity problem that DBN structure learning time can be lower through DBN structure decomposition. In the end, a good idea is presented for finding a faster and efficient DBN structure learning algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第4期938-946,共9页 Systems Engineering and Electronics
基金 国家自然科学基金(90205019) 中国博士后科学基金(2008043410) 陕西省教育厅专项科研基金(07JK277) “十一五”兵器预研支撑基金(62301110115,62301110408)资助课题
关键词 DBN 结构学习 度量分解 移植性 计算复杂度 dynamic Bayesian networks structure learning metric decomposition transplantation computation complexity
  • 相关文献

参考文献15

  • 1Heckerman D. Learning Bayesian networks: the combination of knowledge & statistical data [R]. Microsoft Technical Report, TR-9704, 1997:523 - 592.
  • 2胡文斌,孟波,王少梅.基于贝叶斯网络的权重自学习方法研究[J].计算机集成制造系统,2005,11(12):1781-1784. 被引量:7
  • 3田凤占,黄丽,于剑,黄厚宽.包含隐变量的贝叶斯网络增量学习方法[J].电子学报,2005,33(11):1925-1928. 被引量:9
  • 4Helge Langseth, Thomas D. Nielsen fusion of domain knowledge with data for structural learning in object oriented domains[C]// Proc. of the 4^th Conference on UAI, Morgan Kaufmann Publishers, 2003:139 - 147.
  • 5Wang Fei, Ma Yufei, Zhang Hongjiang, et al. Dynamic Bayesian network based event detection for soccer highlight extraction[C]//Proc. of IEEE ICIP, Singapore, 2004: 24 - 27.
  • 6Min, Hyeun Jeong. Navigation of a mobile robot using behavior network with Bayesian inference[C] //ICMA, 2005, 2005: 1479 - 1484.
  • 7Infantes Guillaume, Ingrand Felix, Ghallab Malik. Learning behaviors models for robot execution control[C]//ICAPS, 2006, 2006: 394 - 397.
  • 8Kish Brian A, Jacques David R, Pachter Meir. Optimal control of sensor threshold for autonomous wide area search munitions[C]//AIAA Guidance, Navigation, and Control Conference, 2005, 2005: 3510- 3539.
  • 9杨有龙,高晓光.基于BD度量的局部网络结构分析[J].模式识别与人工智能,2003,16(1):17-21. 被引量:6
  • 10Martin Pelikan, David E Goldberg. Linkage problem, distribution estination and Bayesian networks[J]. Evolutionary Computation, 2000, 8(3) :311 - 340.

二级参考文献22

  • 1魏一鸣,童光煦,范体均.基于神经网络的多目标权重计算方法探讨[J].武汉化工学院学报,1995,17(4):37-41. 被引量:10
  • 2Buntine W.Theory refinement on Bayesian networks[A].Ambrosio B D,Smets P Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence[C].Los Angeles:Morgan Kaufmann,1991.52-60.
  • 3Lam W,Bacchus F.Using new data to refine a Bayesian network[A].Ramon López de Mántaras,David Poole Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence[C].San Mateo:Morgan Kaufmann,1994.383-390.
  • 4Friedman N,Goldszmidt M.Sequential update of Bayesian network structure[A].Dan Geiger,Prakash P.Shenoy.Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence[C].Morgan Kaufmann,1997.165-174.
  • 5J R Alcobé.An incremental algorithm for tree-shaped bayesian network lear ning[A].Frank van Harmelen Proceedings of the 15th European Conference on Artificial Intelligence[C].Lyon:IOS Press,2002.350-354.
  • 6J R Alcobé.Incremental hill-climbing search applied to bayesian network structure lear ning[A].Proceedings of the 15th European Conference on Machine Lear ning[C],Pisa,Italy,2004.
  • 7Friedman N.Lear ning belief networks in the presence of missing values and hidden variables[A].Proceedings of the 14th Inter national Conference on Machine Lear ning[C].Madison,1997.452-459.
  • 8Myers J W,Laskey K B,DeJong K A.Lear ning bayesian networks from incomplete data using evolutionary algorithms[A].Banzhaf W,Daida J,Eiben AE et al.Proceedings of the Genetic and Evolutionary Computation Conference[C].San Francisco:Morgan Kaufmann,1999.458-465.
  • 9F Bromberg,B Patterson,S Yaramakala.Mining Bayesian Networks from Streamed Data[Z].CS 561 Final Report,Spring 2003.
  • 10Beinlich I,Suermondt G,Chavez R,et al.The ALARM monitoring system:A case study with two probabilistic inference techniques for belief networks[A].Proceedings of the Second European Conference on Artificial Intelligence in Medicine[C].Berlin:Springer-Verlag,1989.247-256.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部