期刊文献+

一种数据缺失下贝叶斯网络增量学习的有效方法 被引量:4

AN EFFICIENT APPROACH FOR INCREMENTAL LEARNING IN BAYESIAN NETWORK WITH MISSING VALUES
在线阅读 下载PDF
导出
摘要 提出一种在数据缺失下增量学习贝叶斯网络的有效算法IBN-M。IBN-M用结构化的EM算法来补全数据集中缺失的数据,并且能在并行和启发式搜索策略提供的较大的搜索空间里搜索,有效地避免了采用结构化EM算法而导致的局部极值。同时采用增量学习的方法,解决了大规模数据学习存在的内存空间不足的问题。实验结果表明IBN-M算法在数据缺失下贝叶斯网络的增量学习中确实能够学出相对精确的网络模型。 This article presents an efficient algorithm--IBN-M for incremental learning in Bayesian Network with missing values. IBN-M uses the structural EM( expectation maximisation) algorithm to complement the missing value in dataset,and it can search in a bigger searching space provided by the parallel and heuristic strategies, which effectively avoids local maximal caused by structural EM algorithm. It deploys the method of incremental learning at the same time which resolves the deficient memory space caused by large dataset learning. Experimental result indicates that the IBN-M algorithm do derive from incremental learning the relatively accurate network in the Bayesian Network with missing values.
出处 《计算机应用与软件》 CSCD 2010年第2期73-75,共3页 Computer Applications and Software
基金 国家教育部博士点基金(20060285008) 江苏省自然科学基金(BK2003030)
关键词 贝叶斯网络 增量学习 缺失数据 Bayesian network Incremental learning Missing values
  • 相关文献

参考文献10

  • 1张连文,郭海鹏.贝叶斯网络引论[M].北京:科学出版社,2007.
  • 2Chen Jiamin, Lv Qiang. Network log mining by Bayesian network [ C ]// 2008 Proceedings of Information Technology and Environmental System Sciences,2008:239 - 242.
  • 3Friedman N, Goldzmidt M, Wyner A. Sequential Update of Bayesian Network Structure [ C ]//Proc. UAI, 1997.
  • 4Friedman N. Learning belief networks in the presence of missing values and hidden variables [ C ]//Proc. of the 14th Int'l Conf. on Machine Learning. San Francisco: Morgan Kaufmann Publishers, 1997 : 125 - 133.
  • 5田凤占,黄丽,于剑,黄厚宽.包含隐变量的贝叶斯网络增量学习方法[J].电子学报,2005,33(11):1925-1928. 被引量:9
  • 6Campos L M de,Femadez-Luna J M,Gamez J A,et al. Ant colony optimization for learning Bayesian networks. Int. J. Approx. Reasoning, 2002,31 (3) :291 -311.
  • 7潘吉斯,吕强,王红玲.一种并行蚁群Bayesian网络学习的算法[J].小型微型计算机系统,2007,28(4):651-655. 被引量:9
  • 8吕强,高彦明,钱培德.共享信息素矩阵:一种新的并行ACO方法[J].自动化学报,2007,33(4):418-421. 被引量:11
  • 9廖学清,吕强,单冬冬.数据缺失下学习贝叶斯网的SEM算法[J].计算机工程,2009,35(8):214-216. 被引量:6
  • 10Kruse R,Borgelt C. An empirical investigation of the k2 metric[ C]// Proc. 6th European Conf. on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, 2001 : 240 - 251.

二级参考文献44

  • 1王双成,苑森淼.具有丢失数据的贝叶斯网络结构学习研究[J].软件学报,2004,15(7):1042-1048. 被引量:62
  • 2潘吉斯,吕强,王红玲.一种并行蚁群Bayesian网络学习的算法[J].小型微型计算机系统,2007,28(4):651-655. 被引量:9
  • 3吕强,高彦明,钱培德.共享信息素矩阵:一种新的并行ACO方法[J].自动化学报,2007,33(4):418-421. 被引量:11
  • 4张连文,郭海鹏.贝叶斯网络引论[M].北京:科学出版社,2007.
  • 5Friedman N. Learning Belief Networks in the Presence of Missing Values and Hidden Variables[C]//Prnc. of the 14th Int'l Conf. on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers, 1997.
  • 6Campos L M, Fernadez J M, Gamez J A, et al. Ant Colony Optimization for Learning Bayesian Networks[J]. Int. J. Approx. Reasoning, 2002, 31 (3): 291-311.
  • 7Buntine W.Theory refinement on Bayesian networks[A].Ambrosio B D,Smets P Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence[C].Los Angeles:Morgan Kaufmann,1991.52-60.
  • 8Lam W,Bacchus F.Using new data to refine a Bayesian network[A].Ramon López de Mántaras,David Poole Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence[C].San Mateo:Morgan Kaufmann,1994.383-390.
  • 9Friedman N,Goldszmidt M.Sequential update of Bayesian network structure[A].Dan Geiger,Prakash P.Shenoy.Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence[C].Morgan Kaufmann,1997.165-174.
  • 10J R Alcobé.An incremental algorithm for tree-shaped bayesian network lear ning[A].Frank van Harmelen Proceedings of the 15th European Conference on Artificial Intelligence[C].Lyon:IOS Press,2002.350-354.

共引文献29

同被引文献32

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部