期刊文献+

贝叶斯网络的非忠实性分布 被引量:1

Unfaithful distributions with respect to Bayesian networks
在线阅读 下载PDF
导出
摘要 贝叶斯网络是图论和概率论有机融合的概率图形模型,主要用于统计推理和智能数据分析.理论上通常假设由基于分布的独立关系可推出基于图结构的d-分割,即贝叶斯网络上的分布是忠实的.针对布尔域上的贝叶斯网络,研究了非忠实分布的构成,提出了贝叶斯网络上分布延拓的概念,得到忠实分布与非忠实分布的平凡延拓均是非忠实分布. Bayesian networks are a marriage between probability theory and graph theory, and thus are probabilistic graphical models. They are mainly used for statistical inference and intelligent data analysis. It is usually supposed that the network retains the d-separation criterion that characterize graph structure from the independence constraints based on distribution, that is, the distribution is a faithful distribution with respect to a Bayesian network. In this paper, some unfaithful distributions are characterized with respect to discrete Bayesian networks in a Boolean domain. It was shown that distributions trivially expanded from faithfulness or unfaithfulness are unfaithful distributions with respect to Bayesian networks.
出处 《智能系统学报》 2009年第4期335-338,共4页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60574075)
关键词 贝叶斯网络 忠实性分布 图形模型 Bayesian networks faithful distributions graphical models
  • 相关文献

参考文献10

  • 1CHICKERING D M, MEEK C. On the incompatibility of faithfulness and monotone DAG faith-fulness [ J ]. Artificial Inteligence, 2006,170 ( 8 ) : 653-666.
  • 2MEEK C. Strong completeness and faithfulness in Bayesian networks [ C ]//Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Mateo, USA, 1995:411-418.
  • 3LEVITZ M, PERLMAN M D, MADIGAN D. Separation and completeness properties for ampchain graph Markov [J]. The Annals of Statistics, 2001, 29(6) : 1751-1784.
  • 4SLEZAK D. Degrees of conditional (in) dependence: a framework for approximate Bayesian networks and examples related to the rough set-based feature selection[ J]. Information Sciences, 2009,179 ( 3 ) : 197-209.
  • 5SETTIMI R, SMITH J Q. Geometry, moments and conditional independence trees with hidden variables [J]. The Annals of Statistics,2000, 28(4) : 1179-1205.
  • 6RICHARD E. Neapolitan. Learning Bayesian networks [ n ]. [ S. l. ] : Prentice Hall, 2003 : 102-107.
  • 7YANG Youlong, WU Yan. Inner product space and concept classes induced by Bayesian networks [ J ]. Acta Application Mathematicae, 2009, 106(3) : 337-348.
  • 8YANG Youlong, WU Yan. VC dimension and inner product space induced by Bayesian networks[ J]. International Journal of Approximate Reasoning, 2009, 50 (7) : 1036-1045.
  • 9杨有龙,高晓光.基于BD度量的局部网络结构分析[J].模式识别与人工智能,2003,16(1):17-21. 被引量:6
  • 10陈英武,高妍方.贝叶斯网络扩展研究综述[J].控制与决策,2008,23(10):1081-1086. 被引量:15

二级参考文献42

  • 1史建国,高晓光.离散动态贝叶斯网络的直接计算推理算法[J].系统工程与电子技术,2005,27(9):1626-1630. 被引量:36
  • 2Langseth H, Bangs O. Parameter Learning in Object-Oriented Bayesian Networks. Annals of Mathematics and Artificial Intelligence, 2001, 32(1-4): 221-243
  • 3Pelikan M, Goldberg D E, Cantu-Paz E. The Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence. University of Illinois, Urbana-Champaign, IlliGAL Rep2000003, 2000
  • 4Pelikan M, Goldberg D E. Linkage Problem, Distribution Estination and Bayesian Networks. Evolutionary Computation, 2000, 8 (3): 311-340
  • 5Pdikan M, Sastry K, Goldberg D E. Evolutionary Algorithms+ Graphical Models = Scalable Black-box Optimization. University of Illinois, Urbana-Champaign, IlliGAL Rep2001029, 2001
  • 6Harik G R, Lobo F G, Goldberg D E. The Compact Genetic Algorithm. IEEE Trans on Evolutionary Computation, 1999, 3(4): 287 - 297
  • 7Heckerman D, Geiger D, Chickering D H. Learning Bayesian Network: The Combination of Knowledge and Statistical Data. Machine Learning, 1995, 20(3): 197-243
  • 8Gillispie S B, Perlman M D. Enumerating Markov Equivalence Classes of Acyclic Digraph Models. University of Washington, Technical Report No. 392, 2001
  • 9Pearl J. Fusion, propagation and structuring in belief networks[J]. Artificial Intelligence, 1986, 29 (3): 241-288.
  • 10Neapolitan R E. Learning Bayesian networks[M]. New York: Pearson Prentice Hall Upper Saddle River, 2004.

共引文献19

同被引文献7

  • 1Ay N, Polani D.Information flows in causal networks[J].Advances in Complex Systems, 2008,11 ( 1 ) : 17-41.
  • 2Pearl J.Causality:models,reasoning and inference[M].Cambridge: Cambridge University Press,2000.
  • 3Slezak D.Degrees of conditional dependence: a framework for approximate Bayesian networks and examples related to the rough set-based feature selection[J].Information Sciences, 2009, 179(3) : 197-209.
  • 4Chickering D M, Meek C.On the incompatibility of faithfulness and monotone DAG faithfulness[J].Artificial Intelligence, 2006, 170(8) :653-666.
  • 5Chan H, Kuroki M.Using descendants as instrumental variables for the identification of direct causal effects in linear SEMs[C]// International Conference on Artificial Intelligence and Statistics (A/STATS), Sardinia, Italy, 2010.
  • 6Levitz M, Perlman M D,Madigan D.Separation and completeness properties for amp chain graph Markov[J].The Annals of Statistics, 2001,29 (6) : 1751-1784.
  • 7赵慧,郑忠国.Gauss因果模型中因果效应识别方法的比较[J].数学物理学报(A辑),2008,28(5):808-817. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部