期刊文献+

基于Arnold映射的改进粒子群算法 被引量:3

Improved Particle Swarm Algorithm Based on Arnold Map
在线阅读 下载PDF
导出
摘要 粒子群算法是一种广受关注的启发式全局最优搜索算法。在分析现有的一些改进算法的基础上,提出了一种利用Arnold混沌映射和单维度扰动项的改进粒子群算法。算法通过改善单个粒子的搜索活力来增强粒子群的全局最优搜索能力。仿真测试表明,该算法能够较好地保持种群的多样性,粒子群优化性能有较大提高。 Particle swarm optimization is one of the heuristic global optimization algorithms, which has attracted vast attentions of researchers. Based on the analysis of the current improved algorithm,one improved algorithm was proposed in this paper, which employs Arnold chaotic map and one dimension disturbance term to improve the particle swarm algorithm. In the proposed algorithm, the researching ability of global optimization of particle swarm is enhanced through the improving of single particle. The simulation results show that the algorithm can keep the population's diversity better, and the performance of the particle swarm is increased notably.
作者 王峻慧
出处 《计算机科学》 CSCD 北大核心 2010年第6期268-270,共3页 Computer Science
关键词 粒子群优化 ARNOLD映射 单维度扰动 Particle swarm optimization, Arnold map,One dimension disturbance
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization [C]//Proc IEEE, International Conference on Neural Networks. Perth, Australia: IEEE Computational Intelligence Society, 1995:1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//Proc. 6th Int. Symposium on Micro Machine and Human Science. Nagoya, 1995 : 39-43.
  • 3Clere M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization[C]//Proc, of the Congress of Evolutionary Computation. Piscataway,NJ,1999:1951-1957.
  • 4Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [C]// Proc. of the Congress on Evolutionary Computation. Seoul, Korea, 2001 : 101-106.
  • 5Natsuki H. Particle swarm optimization with Gaussian mutation [C]//Proc. of the Congress on Evolutionary Computation. Indianapolis, Indiana, 2003 : 72-79.
  • 6Shi Y, Eberhart R A modified particle swarm optimizer[C]// IEEE World Congress on Computational Intelligence Piscata-way: IEEE Press, 1998 : 69-73.
  • 7Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization[C]//Leeture Notes in Computer Science. Chicago: Springer Verlag, 2003: 134-139.
  • 8Chen G M,Huang X B,Jia J Y,et al. Natural exponential inertia weight strategy in particle swarm optimization [C] //Proc, of 6th Congress on Intelligent Control and Automation. Dalian..IEEE Press,2006:3672-3675.
  • 9何庆元,韩传久.带有扰动项的改进粒子群算法[J].计算机工程与应用,2007,43(7):84-86. 被引量:22
  • 10黄辉先,陈资滨.一种改进的粒子群优化算法[J].系统仿真学报,2007,19(21):4922-4925. 被引量:29

二级参考文献50

共引文献117

同被引文献32

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部