期刊文献+

化学镀镍过程中丙酸作用的机理研究 被引量:2

Mechanistic Studies on Mechanism of Propionic Acid Action in Elecroless Nickel Plating
在线阅读 下载PDF
导出
摘要 利用循环伏安法和红外漫反射光谱法研究化学镀镍过程中丙酸的作用机理.不同丙酸浓度下的循环伏安曲线表明,丙酸能同时促进Ni2+的还原和H2PO-2的氧化.根据丙酸分别与NaH2PO2和NiSO4共存时镍基体上吸附物的红外漫反射光谱变化,推断丙酸是通过与NaH2PO2和Ni2+形成表面络合物来促进化学沉积的.丙酸能与NaH2PO2形成分子间氢键,促使P—H键断裂并生成·PHO-2中间物,从而提高H2PO-2的氧化速度;同时,丙酸以其—OCO—官能团与Ni2+生成桥式配合物,有利于加速Ni2+的沉积.H2PO-2氧化速度的提高有助于磷的沉积,从而增大了化学镀层中的磷含量. Propionic acid as an additive in electroless nickel plating will accelerate chemical deposition and raise P contents in the deposits. In this work, the action mechanism of propionic acid in the electroless plating were studied by cyclic voltammetry and infrared reflection spectroscopy. The vohammetric curves at various concentrations of propionic acid indicate that propionic acid will promote both cathodic Ni^2+ reduction and anodic NaHEPO2 oxidation. According to the differences between the infrared reflection spectra of adsorbed propionic acid on Ni substrates and that of the adsorbed species when propionic acid co-exists with NaH2PO2 or NiSO4, it was proposed that the acceleration of chemical deposition was attributed to the formation of surface complexes of propionic acid with NaH2PO2 and NiSO4, respectively. Propionic acid could form intermolecular hydrogen bonds with NaH2 PO2, which promotes splitting of P--H bond in the reductant and producing PHO2^- intermediates, hence facilitates the oxidation of NaH2 PO2. At the same time, propionic acid is coordinated with Ni^2+ via its --OCO-- group to form bridge complexes so as to promote NiSO4 reduction. The accelerating oxidation of NaHEPO2 in turn helps the deposition of P, as a result, P contents in the deposits increase with accelerating NaHEPO2 oxidation.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2006年第3期519-522,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20073035)资助.
关键词 丙酸 有机添加剂 化学镀镍 沉积速度 Propionic acid Organic additive Electroless nickel plating Deposition rate
  • 相关文献

参考文献16

  • 1Reda-Gad M.,El-Magd A..Metal Finishing[J],2001,99(2):77-83
  • 2Hung Aina.J.Electrochem.Soc.[J],1985,132:1047-1049
  • 3Paunovic M.,Arndt R..J.Electrochem.Soc.[J],1983,130:794-798
  • 4Lin K.L.,Hwang J.W..Materials Chemistry and Physics[J],2002,76:204-211
  • 5Tallat El-mallah,About-El-Hassan M.E.,El-Sayed D.A..Met.Fin.[J],1981,12:65-69
  • 6安茂忠,杨哲龙,徐雪峰,张景双,屠振密.化学镀Ni-P合金中无机盐加速剂的影响[J].中国有色金属学报,1999,9(1):155-158. 被引量:10
  • 7Kondo K.,Kojimak K.,Ishida N.et al..J.Electrochem.Soc.[J],1993,140:1598-1600
  • 8Dean J.A..Lange's Handbook of Chemistry,15th Ed.[M],New York:McGraw-Hill,1999
  • 9Schoder B..Raman/Infrared Atlas of Organic Compounds,2nd Ed.[M],Weinheim:VCH,1989
  • 10Pei Z.F.,Ponec V..App.Surf.Sci.[J],1996,103:171-182

二级参考文献9

共引文献12

同被引文献22

  • 1陈艺锋,彭长宏,唐谟堂.锌蒸气的氧化行为与氧化锌的结晶形貌[J].高等学校化学学报,2005,26(2):213-217. 被引量:8
  • 2胡光辉,吴辉煌,杨防祖.碳纳米管表面的无钯活化化学镀镍研究[J].电化学,2006,12(1):25-28. 被引量:6
  • 3王雪芬,吴秋允,孙秀魁,魏宝明.表面层对材料氢渗透的影响[J].腐蚀科学与防护技术,1997,9(1):83-86. 被引量:7
  • 4Yutaka T, Kouji M, Yashiehi O, et al. Application of vapor-deposited carbon and zinc as a substitute for palladium catalyst in the electroless plating of nickel[J]. Surface and Coatings Technology, 2003,169/170: 116-119.
  • 5Nesladek M, Vandierendonck K, Quaeyhaegens C, et al. Adhesion of diamond coatings on cemented carbides[J]. Thin Solid Films,1995,270(1/2):184-188.
  • 6Riccardo P,Fabio B,Fabrizio C, et al. Effect of substrate grain size and surface treatments on the cutting properties of diamond coated Co-cemented tungsten carbide tools[J]. Diamond and Related Materials, 2002,11 (3/4/5/6),726-730.
  • 7黄雪红 黄锦标 陈震.SBS双极膜的制备及应用于成对电合成乙醛酸中的应用.厦门大学学报:自然科学版,2008,:83-85.
  • 8姜晓霞 沈伟.化学镀理论及实践[M].北京:国防工业出版社,2001.475.
  • 9Wasielewski G. E. , Rapp R. A.. The Superalloys[ M], New York: John Wiley & Sons, 1972:287
  • 10Gurrappa I.. Oxid, Met. [J], 1999, 51:353-382

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部