Based on the analysis of flow characteristics of the FCC riser feedstock injection zone, two novel feedstock injection structures are put forward. By investigating three flow parameters in the feedstock injection zone...Based on the analysis of flow characteristics of the FCC riser feedstock injection zone, two novel feedstock injection structures are put forward. By investigating three flow parameters in the feedstock injection zone under the three different structures (the traditional and the novel No. 1, No. 2 structures): the local density, the particle backmixng ratio, and the jet eigen-concentration, the flow feature under three structures were obtained. The experimental results demonstrate that the flow features under both proposed structures are obviously improved comparing with those under the traditional structure. Especially, the performance of the deflector-structured No. 2 is more desirable than that of No. 1.展开更多
Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield ...Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield of pyridine and 3-picoline decreased, but the selectivity of pyridine over 3-picoline increased compared to turbulent fluidized-bed reactor. Based on experimental data, a modified kinetic model was used for the determination of optimal operating condition for riser reactor. The optimal operating condition of riser reactor given by this modified model was as follows: The reaction temperature of 755 K, catalyst to feedstock ratio (CTFR) of 87, residence timeof3.8sandinitialacetaldehydesconcentrationof0.0029mol.L-1 (acetaldehydes to formaldehydes ratio by mole (ATFR) of 0.65 and ammonia to aldehydes ratio by mole (ATAR) of 0.9, water contention of 63wt% (formaldehyde solution)).展开更多
In this work, the effects of injecting an evaporating liquid jet into solid-gas flow are experimentally investigated. A new model (SHED model) and a supplementary model (spray model) have also been proposed to inv...In this work, the effects of injecting an evaporating liquid jet into solid-gas flow are experimentally investigated. A new model (SHED model) and a supplementary model (spray model) have also been proposed to investigate some flow-field characteristics in three-phase fluidized bed with the mean relative error 4.3% between model and measured results. Some experiments were conducted to study the influences of flow-field parameters such as liquid volumetric flow rate, injection velocity, jet angle and gas superficial velocity as well as solid mass flux on the jet penetration depth (JPD). In addition, independent variables were experimentally employed to propose two empirical correlations for JPD by using multiple regression method and spray cone angle (SCA) by using dimensional analysis technique. The mean relative errors between the JPD and SCA correlations versus ex- perimental data were 7.5% and 3.9%, respectively. In addition, in order to identify the variable effect, a parametric study was carried out. Applying the proposed model can avoid direct use of expensive devices to measureJPD and to nredict dronlet size.展开更多
Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,...Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model.展开更多
Numerical simulation on the flow,heat transfer and cracking reactions in commercial fluid catalyticcracking(FCC)riser reactors were carried out employing the developed turbulent gas-solid two-phase flow-reac-tion mode...Numerical simulation on the flow,heat transfer and cracking reactions in commercial fluid catalyticcracking(FCC)riser reactors were carried out employing the developed turbulent gas-solid two-phase flow-reac-tion model for FCC riser reactors given in Part Ⅰ of the present paper.Detailed information about the turbulentflow fields in the riser reactor obtained revealed the basic characteristics of the gas-solid two-phase turbulentflows when heat transfer and catalytic cracking reactions were co-existing in the riser.Results showed that thedistributions of the flow,the turbulence kinetic energy and the catalyst particle concentration are not uniform inthe axial,radial and tangential directions.The most complicated part of the riser reactor is the feed injectingzone.The complicated configuration of the turbulent gas-solid two-phase flows would exert a great influence onthe results of interphase heat transfer and cracking reactions.展开更多
Riser reactor is a key unit in the Fluid Catalytic Cracking (FCC), and it has important influences on increasing the yield coefficient of gas and oil. In this paper, the behaviors of gas-solid two-phase flow in the tr...Riser reactor is a key unit in the Fluid Catalytic Cracking (FCC), and it has important influences on increasing the yield coefficient of gas and oil. In this paper, the behaviors of gas-solid two-phase flow in the traditional y-type riser reactor are investigated by numerical simulation. The calculated particle concentration distribution is in good agreement with the experimental data, which verified the advanced models and calculating methods. The non-uniform distribution, such as core-annulus flow, may result in the unreasonable matching relationship of catalyst-to-oil ratio. An optimized riser with cuneal internals is proposed and the comparison of two different structures of riser reactor is presented. The comparison results show that the cuneal internals in the riser both can block effectively the slip down of the particles near wall region and weaken core-annulus flow structure due to the redistribution of particles. The results also prove that the particle concentration distribution becomes uniform along the axial and radial direction in the optimized riser by adding cuneal internals, which would be benefits for the catalytic cracking reactions.展开更多
Dispersion models for the simulation of an industrial Fluid Catalytic Cracking Riser Reactor have been developed. The models were developed based on the principle of conservation of mass and energy on the reacting spe...Dispersion models for the simulation of an industrial Fluid Catalytic Cracking Riser Reactor have been developed. The models were developed based on the principle of conservation of mass and energy on the reacting species due to bulk flow and axial dispersion. The four-lump kinetic scheme was used to describe the cracking reactions occurring in the reactor. The model equations were a set of parabolic Ordinary Differential Equations which were reduced to first order differential equations by appropriate substitutions and integrated numerically using 4th order Runge Kutta algorithm using Visual Basic 6.0. Results obtained showed a maximum percentage deviation ranging from 0.31% to 5.7% between model predictions and industrial plant data indicating reasonable agreement. Simulation of model at various operating parameters gave optimum gasoline yield of 45.6% of the most significant variable of temperature (658 K), superficial velocity (0.1 m/s), catalyst to gas oil ratio (7.0) and diffusion coefficient of 0.23 m2/s.展开更多
The reasonable reactor design is of great importance for increasing the C_(2)yield(C2H4 and C2H6)of the oxidative coupling of methane(OCM),and the OCM reactor should remove the heat released in reactions quickly and e...The reasonable reactor design is of great importance for increasing the C_(2)yield(C2H4 and C2H6)of the oxidative coupling of methane(OCM),and the OCM reactor should remove the heat released in reactions quickly and efficiently and minimize the consecutive reaction of ethylene to carbon oxides.The fluidized bed reactor is characterized by excellent heat transfer,superior mass transport,and large handling capacity,while fewer studies focused on large-scale fluidized bed reactors for the OCM reaction.Therefore,large cold-model experiments and computational fluid dynamics simulations were conducted to investigate hydrodynamics and the OCM reaction performance in a large-scale bubbling fluidized bed(BFB)and a large-scale riser.In the BFB reactor,consecutive reactions of ethylene are acute because of the strong gas back-mixing,high solids holdup,and non-uniform solids distribution.While the consecutive reactions of ethylene are negligible due to the plug flow structure and low solids holdup in the riser reactor.Further,both reactors can achieve isothermal operation for the OCM process.The C_(2)selectivity of 45.4%and C_(2)yield of 21.1%are obtained in the riser reactor,increasing by 20.3%and 5.8%individually than that in the BFB reactor.This study provides useful information and reference to the OCM reactor designandcommercialization.展开更多
This paper studies the influence of feed injection on the hydrodynamic behavior of fluid catalytic cracking riser reactors. Experiments were conducted in a cold model of 186 mm ID with two oppositely inclined secondar...This paper studies the influence of feed injection on the hydrodynamic behavior of fluid catalytic cracking riser reactors. Experiments were conducted in a cold model of 186 mm ID with two oppositely inclined secondary air feed nozzles. The flow structure was determined by means of the axial static pressure measurements and local radial optic fiber probe measurements on different levels with emphasis on the sections downstream of the secondary injection. The measurements reveal that the secondary injection plays a crucial role on riser hydrodynamics. Just above the secondary injection, the flow and mixing are strongly affected, while below the secondary injection the effect is weak. The radial profile just downstream of secondary injection demonstrates wavy features. The effective region of secondary injection could be estimated by the axial pressure gradient profiles and/or the radial profiles of local solids velocity and density.展开更多
文摘Based on the analysis of flow characteristics of the FCC riser feedstock injection zone, two novel feedstock injection structures are put forward. By investigating three flow parameters in the feedstock injection zone under the three different structures (the traditional and the novel No. 1, No. 2 structures): the local density, the particle backmixng ratio, and the jet eigen-concentration, the flow feature under three structures were obtained. The experimental results demonstrate that the flow features under both proposed structures are obviously improved comparing with those under the traditional structure. Especially, the performance of the deflector-structured No. 2 is more desirable than that of No. 1.
基金Supported by the National Basic Research Program of China(973 Program,2012CB215000)
文摘Pjridine has been generally synthesized by aldehydes and ammonia in a turbulent fluidized-bed reactor. In this paper, a novel riser reactor was proposed for pyridine synthesis. Experiment result showed that the yield of pyridine and 3-picoline decreased, but the selectivity of pyridine over 3-picoline increased compared to turbulent fluidized-bed reactor. Based on experimental data, a modified kinetic model was used for the determination of optimal operating condition for riser reactor. The optimal operating condition of riser reactor given by this modified model was as follows: The reaction temperature of 755 K, catalyst to feedstock ratio (CTFR) of 87, residence timeof3.8sandinitialacetaldehydesconcentrationof0.0029mol.L-1 (acetaldehydes to formaldehydes ratio by mole (ATFR) of 0.65 and ammonia to aldehydes ratio by mole (ATAR) of 0.9, water contention of 63wt% (formaldehyde solution)).
文摘In this work, the effects of injecting an evaporating liquid jet into solid-gas flow are experimentally investigated. A new model (SHED model) and a supplementary model (spray model) have also been proposed to investigate some flow-field characteristics in three-phase fluidized bed with the mean relative error 4.3% between model and measured results. Some experiments were conducted to study the influences of flow-field parameters such as liquid volumetric flow rate, injection velocity, jet angle and gas superficial velocity as well as solid mass flux on the jet penetration depth (JPD). In addition, independent variables were experimentally employed to propose two empirical correlations for JPD by using multiple regression method and spray cone angle (SCA) by using dimensional analysis technique. The mean relative errors between the JPD and SCA correlations versus ex- perimental data were 7.5% and 3.9%, respectively. In addition, in order to identify the variable effect, a parametric study was carried out. Applying the proposed model can avoid direct use of expensive devices to measureJPD and to nredict dronlet size.
文摘Gas-solid two-phase turbulent flows,mass transfer,heat transfer and catalytic cracking reactions areknown to exert interrelated influences in commercial fluid catalytic cracking(FCC)riser reactors.In the presentpaper,a three-dimensional turbulent gas-solid two-phase flow-reaction model for FCC riser reactors was devel-oped.The model took into account the gas-solid two-phase turbulent flows,inter-phase heat transfer,masstransfer,catalytic cracking reactions and their interrelated influence.The k-V-k_P two-phase turbulence modelwas employed and modified for the two-phase turbulent flow patterns with relatively high particle concentration.Boundary conditions for the flow-reaction model were given.Related numerical algorithm was formed and a nu-merical code was drawn up.Numerical modeling for commercial FCC riser reactors could be carried out with thepresented model.
文摘Numerical simulation on the flow,heat transfer and cracking reactions in commercial fluid catalyticcracking(FCC)riser reactors were carried out employing the developed turbulent gas-solid two-phase flow-reac-tion model for FCC riser reactors given in Part Ⅰ of the present paper.Detailed information about the turbulentflow fields in the riser reactor obtained revealed the basic characteristics of the gas-solid two-phase turbulentflows when heat transfer and catalytic cracking reactions were co-existing in the riser.Results showed that thedistributions of the flow,the turbulence kinetic energy and the catalyst particle concentration are not uniform inthe axial,radial and tangential directions.The most complicated part of the riser reactor is the feed injectingzone.The complicated configuration of the turbulent gas-solid two-phase flows would exert a great influence onthe results of interphase heat transfer and cracking reactions.
文摘Riser reactor is a key unit in the Fluid Catalytic Cracking (FCC), and it has important influences on increasing the yield coefficient of gas and oil. In this paper, the behaviors of gas-solid two-phase flow in the traditional y-type riser reactor are investigated by numerical simulation. The calculated particle concentration distribution is in good agreement with the experimental data, which verified the advanced models and calculating methods. The non-uniform distribution, such as core-annulus flow, may result in the unreasonable matching relationship of catalyst-to-oil ratio. An optimized riser with cuneal internals is proposed and the comparison of two different structures of riser reactor is presented. The comparison results show that the cuneal internals in the riser both can block effectively the slip down of the particles near wall region and weaken core-annulus flow structure due to the redistribution of particles. The results also prove that the particle concentration distribution becomes uniform along the axial and radial direction in the optimized riser by adding cuneal internals, which would be benefits for the catalytic cracking reactions.
文摘Dispersion models for the simulation of an industrial Fluid Catalytic Cracking Riser Reactor have been developed. The models were developed based on the principle of conservation of mass and energy on the reacting species due to bulk flow and axial dispersion. The four-lump kinetic scheme was used to describe the cracking reactions occurring in the reactor. The model equations were a set of parabolic Ordinary Differential Equations which were reduced to first order differential equations by appropriate substitutions and integrated numerically using 4th order Runge Kutta algorithm using Visual Basic 6.0. Results obtained showed a maximum percentage deviation ranging from 0.31% to 5.7% between model predictions and industrial plant data indicating reasonable agreement. Simulation of model at various operating parameters gave optimum gasoline yield of 45.6% of the most significant variable of temperature (658 K), superficial velocity (0.1 m/s), catalyst to gas oil ratio (7.0) and diffusion coefficient of 0.23 m2/s.
基金the National Key Research and Development Program of China(grant No.2021YFA1501304)the National Natural Science Foundation of China(grant No.21961132026)Science Foundation of China University of Petroleum,Beijing(grant No.2462022QzDX003).
文摘The reasonable reactor design is of great importance for increasing the C_(2)yield(C2H4 and C2H6)of the oxidative coupling of methane(OCM),and the OCM reactor should remove the heat released in reactions quickly and efficiently and minimize the consecutive reaction of ethylene to carbon oxides.The fluidized bed reactor is characterized by excellent heat transfer,superior mass transport,and large handling capacity,while fewer studies focused on large-scale fluidized bed reactors for the OCM reaction.Therefore,large cold-model experiments and computational fluid dynamics simulations were conducted to investigate hydrodynamics and the OCM reaction performance in a large-scale bubbling fluidized bed(BFB)and a large-scale riser.In the BFB reactor,consecutive reactions of ethylene are acute because of the strong gas back-mixing,high solids holdup,and non-uniform solids distribution.While the consecutive reactions of ethylene are negligible due to the plug flow structure and low solids holdup in the riser reactor.Further,both reactors can achieve isothermal operation for the OCM process.The C_(2)selectivity of 45.4%and C_(2)yield of 21.1%are obtained in the riser reactor,increasing by 20.3%and 5.8%individually than that in the BFB reactor.This study provides useful information and reference to the OCM reactor designandcommercialization.
基金Supported by the National Natural Science Foundation of China(No.29976024)
文摘This paper studies the influence of feed injection on the hydrodynamic behavior of fluid catalytic cracking riser reactors. Experiments were conducted in a cold model of 186 mm ID with two oppositely inclined secondary air feed nozzles. The flow structure was determined by means of the axial static pressure measurements and local radial optic fiber probe measurements on different levels with emphasis on the sections downstream of the secondary injection. The measurements reveal that the secondary injection plays a crucial role on riser hydrodynamics. Just above the secondary injection, the flow and mixing are strongly affected, while below the secondary injection the effect is weak. The radial profile just downstream of secondary injection demonstrates wavy features. The effective region of secondary injection could be estimated by the axial pressure gradient profiles and/or the radial profiles of local solids velocity and density.