The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
The Thwaites Glacier in western Antarctica(Fig. 1) keeps glaciologists and climate scientists awake at night. The 120 kmwide glacier loses about 45 billion tonnes of ice each year, accounting for about 4% of global se...The Thwaites Glacier in western Antarctica(Fig. 1) keeps glaciologists and climate scientists awake at night. The 120 kmwide glacier loses about 45 billion tonnes of ice each year, accounting for about 4% of global sea level rise [1]. If it melted completely, sea levels would climb 65 cm, and follow-on effects could lead to a 3 m increase [2]. But if some scientists' vision becomes reality, in 10–15 years construction crews will sail into the Amundsen Sea off Antarctica to begin building an 80 km long underwater curtain that will shield the glacier from the warm currents that are accelerating its decline [3].展开更多
The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculat...The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.展开更多
Bionic microfluidics is garnering increasing attention due to the superior fluidic performance enabled by biomimetic microstructures.Inspired by the unique structures of young pumpkin stems,we fabricate helicoidally p...Bionic microfluidics is garnering increasing attention due to the superior fluidic performance enabled by biomimetic microstructures.Inspired by the unique structures of young pumpkin stems,we fabricate helicoidally patterned microchannels with precisely controlled morphologies using the projection micro-stereolithography(PμSL)-based 3D printing technique.Our helicoidally patterned microchannels achieve approximately twice the liquid lifting height compared to similarly sized smooth microchannels.This improvement is attributed to the enhanced capillary force.The additional meniscus formed between the helicoidally patterned microstructures significantly contributes to the increased capillary effects.Furthermore,the underlying mechanisms of fluidic performance in helicoidally patterned microchannels are theorized using a newly developed equation,which is also employed to optimize the geometric parameters and fluidic performance of the biomimetic helicoidal microchannels.Additionally,our biomimetic helicoidally patterned microchannels facilitate a significant step-lifting phenomenon,mimicking tall trees'transpiration.The fluidic performance of our biomimetic helicoidally patterned microchannels show promise for applications in enhanced liquid lifting,step-lifting,clean-water production,and others.展开更多
In the face of uncertainty about climate change,this study examines the dynamics of sea level rise and coastline erosion in the East Coast of Malaysia.It examines past changes in the shoreline,beach profiles,and erosi...In the face of uncertainty about climate change,this study examines the dynamics of sea level rise and coastline erosion in the East Coast of Malaysia.It examines past changes in the shoreline,beach profiles,and erosion rates using sophisticated coastal engineering models,remote sensing,field observations,and numerical modeling.The focus is on developing a strong approach for Coastal City Hazard Management(CCHM)zones and modeling erosion trends.Results show that coastal erosion poses a serious risk to socioeconomic activities,habitats,and biodiversity.It is made worse by sea level rise and human activity.There is an assessment of the implications and solutions for mitigation for critical regions.Policymakers,engaged in coastal hazard management and climate change adaptation will find the study vital as it promotes proactive measures to protect vulnerable coastal populations and ecosystems.展开更多
The internal hotspot temperature rise prediction in nanocrystalline high-frequency transformers(nanoHFTs) is essential to ensure reliable operation. This paper presents a three-dimensional thermal network(3DTN) model ...The internal hotspot temperature rise prediction in nanocrystalline high-frequency transformers(nanoHFTs) is essential to ensure reliable operation. This paper presents a three-dimensional thermal network(3DTN) model for epoxy resin encapsulated nano HFTs, which aims to precisely predict the temperature distribution inside the transformer in combination with the finite element method(FEM). A magnetothermal bidirectional coupling 3DTN model is established by analyzing the thermal conduction between the core, windings, and epoxy resin, while also considering the convection and radiation heat transfer mechanisms on the surface of the epoxy resin. The model considers the impact of loss distribution in the core and windings on the temperature field and adopts a simplified 1/2 thermal network model to reduce computational complexity. Furthermore, the results of FEM are compared with experimental results to verify the accuracy of the 3DTN model in predicting the temperature rise of nano HFT. The results show that the 3DTN model reduces errors by an average of 5.25% over the traditional two-dimensional thermal network(2DTN) model, particularly for temperature distributions in the windings and core. This paper provides a temperature rise prediction method for the thermal design and offers a theoretical basis and engineering guidance for the optimization of their thermal management systems.展开更多
串联弹性驱动器(Series elastic actuator, SEA)是机器人交互系统中的一种理想力源.本文针对非线性SEA的力矩控制问题提出一种基于RISE (Robust integral of the sign of the error)反馈的最优控制方法,能够克服模型参数不确定和有界扰...串联弹性驱动器(Series elastic actuator, SEA)是机器人交互系统中的一种理想力源.本文针对非线性SEA的力矩控制问题提出一种基于RISE (Robust integral of the sign of the error)反馈的最优控制方法,能够克服模型参数不确定和有界扰动,实现SEA输出力矩在交互过程中快速平稳地收敛到期望值.具体来说,首先对SEA的模型进行分析和变换;然后假设模型参数和扰动均已知,并在此基础上基于二次型指标设计最优控制律;之后基于RISE反馈重新设计控制律抵消模型参数不确定性和有界扰动,基于Lyapunov理论分析控制器的收敛性和信号的有界性,实验结果表明这种基于RISE反馈的最优控制方法具有良好的控制性能和对有界扰动的鲁棒性.展开更多
In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED...In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED to simulate storm surge is validated by comparing model result with observed data. Sensitivity experiments are designed to study the influence of sea level rise on typhoon storm surge. Numerical experiment shows that influence of mean sea level rise on typhoon storm surge is non-uniform spatially and changes as typhoon process differs. Maybe fixed boundary method would weaken the influence of mean sea level rise on storm surge, and free boundary method is suggested for the succeeding study.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
文摘The Thwaites Glacier in western Antarctica(Fig. 1) keeps glaciologists and climate scientists awake at night. The 120 kmwide glacier loses about 45 billion tonnes of ice each year, accounting for about 4% of global sea level rise [1]. If it melted completely, sea levels would climb 65 cm, and follow-on effects could lead to a 3 m increase [2]. But if some scientists' vision becomes reality, in 10–15 years construction crews will sail into the Amundsen Sea off Antarctica to begin building an 80 km long underwater curtain that will shield the glacier from the warm currents that are accelerating its decline [3].
基金National Key R&D Program of China(2022YFB3706901)National Natural Science Foundation of China(52274382)Key Research and Development Program of Hubei Province(2022BAA024)。
文摘The hot deformation behavior of as-extruded Ti-6554 alloy was investigated through isothermal compression at 700–950°C and 0.001–1 s^(−1).The temperature rise under different deformation conditions was calculated,and the curve was corrected.The strain compensation constitutive model of as-extruded Ti-6554 alloy based on temperature rise correction was established.The microstructure evolution under different conditions was analyzed,and the dynamic recrystallization(DRX)mechanism was revealed.The results show that the flow stress decreases with the increase in strain rate and the decrease in deformation temperature.The deformation temperature rise gradually increases with the increase in strain rate and the decrease in deformation temperature.At 700°C/1 s^(−1),the temperature rise reaches 100°C.The corrected curve value is higher than the measured value,and the strain compensation constitutive model has high prediction accuracy.The precipitation of theαphase occurs during deformation in the twophase region,which promotes DRX process of theβphase.At low strain rate,the volume fraction of dynamic recrystallization increases with the increase in deformation temperature.DRX mechanism includes continuous DRX and discontinuous DRX.
基金supported by National Natural Science Foundation of China through Grant Nos.52495000,52332012 and 52176093partially supported by Beijing Huiyangdao Health Technology Co.,Ltd。
文摘Bionic microfluidics is garnering increasing attention due to the superior fluidic performance enabled by biomimetic microstructures.Inspired by the unique structures of young pumpkin stems,we fabricate helicoidally patterned microchannels with precisely controlled morphologies using the projection micro-stereolithography(PμSL)-based 3D printing technique.Our helicoidally patterned microchannels achieve approximately twice the liquid lifting height compared to similarly sized smooth microchannels.This improvement is attributed to the enhanced capillary force.The additional meniscus formed between the helicoidally patterned microstructures significantly contributes to the increased capillary effects.Furthermore,the underlying mechanisms of fluidic performance in helicoidally patterned microchannels are theorized using a newly developed equation,which is also employed to optimize the geometric parameters and fluidic performance of the biomimetic helicoidal microchannels.Additionally,our biomimetic helicoidally patterned microchannels facilitate a significant step-lifting phenomenon,mimicking tall trees'transpiration.The fluidic performance of our biomimetic helicoidally patterned microchannels show promise for applications in enhanced liquid lifting,step-lifting,clean-water production,and others.
文摘In the face of uncertainty about climate change,this study examines the dynamics of sea level rise and coastline erosion in the East Coast of Malaysia.It examines past changes in the shoreline,beach profiles,and erosion rates using sophisticated coastal engineering models,remote sensing,field observations,and numerical modeling.The focus is on developing a strong approach for Coastal City Hazard Management(CCHM)zones and modeling erosion trends.Results show that coastal erosion poses a serious risk to socioeconomic activities,habitats,and biodiversity.It is made worse by sea level rise and human activity.There is an assessment of the implications and solutions for mitigation for critical regions.Policymakers,engaged in coastal hazard management and climate change adaptation will find the study vital as it promotes proactive measures to protect vulnerable coastal populations and ecosystems.
基金supported by the Project of the National Key Research and Development Program of China under Grant 2022YFB2404100。
文摘The internal hotspot temperature rise prediction in nanocrystalline high-frequency transformers(nanoHFTs) is essential to ensure reliable operation. This paper presents a three-dimensional thermal network(3DTN) model for epoxy resin encapsulated nano HFTs, which aims to precisely predict the temperature distribution inside the transformer in combination with the finite element method(FEM). A magnetothermal bidirectional coupling 3DTN model is established by analyzing the thermal conduction between the core, windings, and epoxy resin, while also considering the convection and radiation heat transfer mechanisms on the surface of the epoxy resin. The model considers the impact of loss distribution in the core and windings on the temperature field and adopts a simplified 1/2 thermal network model to reduce computational complexity. Furthermore, the results of FEM are compared with experimental results to verify the accuracy of the 3DTN model in predicting the temperature rise of nano HFT. The results show that the 3DTN model reduces errors by an average of 5.25% over the traditional two-dimensional thermal network(2DTN) model, particularly for temperature distributions in the windings and core. This paper provides a temperature rise prediction method for the thermal design and offers a theoretical basis and engineering guidance for the optimization of their thermal management systems.
文摘串联弹性驱动器(Series elastic actuator, SEA)是机器人交互系统中的一种理想力源.本文针对非线性SEA的力矩控制问题提出一种基于RISE (Robust integral of the sign of the error)反馈的最优控制方法,能够克服模型参数不确定和有界扰动,实现SEA输出力矩在交互过程中快速平稳地收敛到期望值.具体来说,首先对SEA的模型进行分析和变换;然后假设模型参数和扰动均已知,并在此基础上基于二次型指标设计最优控制律;之后基于RISE反馈重新设计控制律抵消模型参数不确定性和有界扰动,基于Lyapunov理论分析控制器的收敛性和信号的有界性,实验结果表明这种基于RISE反馈的最优控制方法具有良好的控制性能和对有界扰动的鲁棒性.
文摘In this paper, ECOMSED (Estuarine Coastal Ocean Model with sediment transport) model is employed to simulate storm surge process caused by typhoon passing across East China Sea in nearly years. Capability of ECOMSED to simulate storm surge is validated by comparing model result with observed data. Sensitivity experiments are designed to study the influence of sea level rise on typhoon storm surge. Numerical experiment shows that influence of mean sea level rise on typhoon storm surge is non-uniform spatially and changes as typhoon process differs. Maybe fixed boundary method would weaken the influence of mean sea level rise on storm surge, and free boundary method is suggested for the succeeding study.