NH_(3)作为氢能载体,可实现氢能远距离输运。针对NH_(3)燃烧的反应性低、稳定性差、高燃料型NO_(x)排放问题,设计旋流燃烧器和空气分级燃烧室,实验研究功率为5~23 k W的NH_(3)、NH_(3)/CH_(4)扩散火焰NO_(x)排放特性。并采用化学反应器...NH_(3)作为氢能载体,可实现氢能远距离输运。针对NH_(3)燃烧的反应性低、稳定性差、高燃料型NO_(x)排放问题,设计旋流燃烧器和空气分级燃烧室,实验研究功率为5~23 k W的NH_(3)、NH_(3)/CH_(4)扩散火焰NO_(x)排放特性。并采用化学反应器网络(CRN)进行化学动力学模拟,分析排放变化的原因。结果表明:5 kW、Ф_(pri)=1.05的条件下,NH_(3)火焰NO_(x)测量排放最低为114.4×10^(-6)@15%O_(2);随着功率升高,NO_(x)排放增加,且导致燃烧不充分、火焰延长,此时最佳Ф_(pri)提前、燃烧范围减少、NO_(x)进一步增加;本文的CRN更适合模拟预混燃烧的NO_(x)排放,而不是扩散燃烧;功率升高不会改变反应路径,但生成NO的基元反应速率的升高幅度略大于消耗NO的基元反应速率,从而导致NO排放升高.展开更多
以氨基-1,2,4-三唑和2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料,通过中和反应合成出两种新型含能离子盐——2-偕二硝甲基-5-硝基四唑3-氨基-1,2,4-三唑盐(3-ATDNMNT)和2-偕二硝甲基-5-硝基四唑4-氨基-1,2,4-三唑盐(4-ATDNMNT),收率分别为9...以氨基-1,2,4-三唑和2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料,通过中和反应合成出两种新型含能离子盐——2-偕二硝甲基-5-硝基四唑3-氨基-1,2,4-三唑盐(3-ATDNMNT)和2-偕二硝甲基-5-硝基四唑4-氨基-1,2,4-三唑盐(4-ATDNMNT),收率分别为95.4%和96.7%;利用FT-IR、1 H NMR、13C NMR、15 N NMR及元素分析等方法对其结构进行表征;采用量子化学方法计算了3-ATDNMNT和4-ATDNMNT的爆轰性能;在标准状态下(膨胀比为70∶1),利用最小自由能原理,分别计算了两种离子盐在丁羟复合推进剂中的能量性能。结果表明,3-ATDNMNT的爆速和爆压分别为8.587km/s和33.58GPa,4-ATDNMNT的爆速和爆压分别为8.693km/s和34.31GPa。以3-ATDNMNT部分取代丁羟复合推进剂中的AP后,丁羟复合推进剂的理论比冲可达2 635.7N·s/kg。以4-ATDNMNT部分取代丁羟复合推进剂中的AP后,当HTPB、Al、AP及4-ATDNMNT各组分质量分数分别为10%、5%、15%及70%时,获得该丁羟复合推进剂的最高理论比冲为2 677.2N·s/kg。展开更多
文摘NH_(3)作为氢能载体,可实现氢能远距离输运。针对NH_(3)燃烧的反应性低、稳定性差、高燃料型NO_(x)排放问题,设计旋流燃烧器和空气分级燃烧室,实验研究功率为5~23 k W的NH_(3)、NH_(3)/CH_(4)扩散火焰NO_(x)排放特性。并采用化学反应器网络(CRN)进行化学动力学模拟,分析排放变化的原因。结果表明:5 kW、Ф_(pri)=1.05的条件下,NH_(3)火焰NO_(x)测量排放最低为114.4×10^(-6)@15%O_(2);随着功率升高,NO_(x)排放增加,且导致燃烧不充分、火焰延长,此时最佳Ф_(pri)提前、燃烧范围减少、NO_(x)进一步增加;本文的CRN更适合模拟预混燃烧的NO_(x)排放,而不是扩散燃烧;功率升高不会改变反应路径,但生成NO的基元反应速率的升高幅度略大于消耗NO的基元反应速率,从而导致NO排放升高.
文摘以氨基-1,2,4-三唑和2-偕二硝甲基-5-硝基四唑(HDNMNT)为原料,通过中和反应合成出两种新型含能离子盐——2-偕二硝甲基-5-硝基四唑3-氨基-1,2,4-三唑盐(3-ATDNMNT)和2-偕二硝甲基-5-硝基四唑4-氨基-1,2,4-三唑盐(4-ATDNMNT),收率分别为95.4%和96.7%;利用FT-IR、1 H NMR、13C NMR、15 N NMR及元素分析等方法对其结构进行表征;采用量子化学方法计算了3-ATDNMNT和4-ATDNMNT的爆轰性能;在标准状态下(膨胀比为70∶1),利用最小自由能原理,分别计算了两种离子盐在丁羟复合推进剂中的能量性能。结果表明,3-ATDNMNT的爆速和爆压分别为8.587km/s和33.58GPa,4-ATDNMNT的爆速和爆压分别为8.693km/s和34.31GPa。以3-ATDNMNT部分取代丁羟复合推进剂中的AP后,丁羟复合推进剂的理论比冲可达2 635.7N·s/kg。以4-ATDNMNT部分取代丁羟复合推进剂中的AP后,当HTPB、Al、AP及4-ATDNMNT各组分质量分数分别为10%、5%、15%及70%时,获得该丁羟复合推进剂的最高理论比冲为2 677.2N·s/kg。