摘要
本文基于ABCD传输矩阵方法,系统研究了采用激光二极管泵浦、Nd∶GdVO4自拉曼晶体与LBO和频晶体构建的激光系统的稳定性与输出性能。通过引入热透镜等效模型,建立统一的ABCD建模框架,深入分析了腔镜曲率半径、臂长及热透镜焦距等参数对光斑尺寸与谐振腔稳定性的影响。在此基础上,将3种腔型结构分别引入拉曼和频耦合速率方程中,模拟并对比不同腔型下基频光、Stokes光及和频光的光子数密度演化与脉宽特性。仿真结果表明,Z型腔具备中等热透镜敏感性的同时,展现出较高的Stokes光及和频光输出能力,非线性转换效率优于线型腔与V型腔,脉宽适中、能量集中性强,适用于高峰值激光输出场景。研究结果为小型化高功率激光器腔型结构的优化设计提供了理论依据。
This paper systematically investigates the stability and output performance of a laser system composed of a laser diode-pumped Nd:GdVO4 self-Raman crystal and an LBO sum-frequency generation crystal,based on the ABCD matrix method.By introducing an equivalent thermal lens model,a unified ABCD modeling framework is estab-lished to analyze the influence of cavity mirror curvature,arm length,and thermal lens focal length on beam size and resonator stability.On this basis,three cavity configurations are incorporated into the coupled Raman and sum-frequency rate equations to simulate and compare the photon density evolution and pulse width characteristics of the fun-damental,Stokes,and sum-frequency light.Simulation results show that the Z-type cavity exhibits moderate sensitivity to thermal lensing while achieving higher Stokes and sum-frequency output,with better nonlinear conversion efficiency than the linear and V-type cavities.It also delivers moderate pulse widths and strong energy concentration,making it suitable for high-peak-power laser applications.The research findings provide a theoretical basis for optimizing the design of the cavity structure of miniaturized high-power lasers.
作者
胡田田
蔡云鹏
郭文博
丁洁
白振旭
HU Tiantian;CAI YunPeng;GUO Wenbo;DING Jie;BAI Zhenxu(Innovation and Research Institute of Hebei University of Technology(Shijiazhuang),Shijiazhuang,Hebei 050299,China;School of Electronics and Information Engineering,Hebei University of Technology,Tianjin 300401,China)
出处
《河北工业大学学报》
2025年第6期44-52,共9页
Journal of Hebei University of Technology
基金
国家重点研发计划资助项目(2024YFE0206000)
石家庄市科技合作专项项目(SJZZXC24007)。
关键词
线型腔
V型腔
Z型腔
束腰半径
热透镜焦距
速率方程
linear cavity
V-shaped cavity
Z-shaped cavity
beam waist radius
thermal lens focal length
rate equations