期刊文献+

基于引力搜索算法融合DWA的移动机器人路径规划

Mobile robot path planning based on gravitational search algorithm fused with DWA
在线阅读 下载PDF
导出
摘要 移动机器人路径规划是自主导航领域的核心问题,涉及全局路径优化与局部避障控制。提出了一种基于改进引力搜索算法(GSA)与动态窗口法(DWA)融合的路径规划方法,以提升机器人在复杂环境中的自主运动能力。首先,改进GSA通过非线性时变引力调节、局部搜索增强和个体运动优化,提高全局路径规划的质量与搜索效率。随后,DWA在局部路径规划阶段利用速度采样与动态评估机制,实现实时避障与轨迹优化。两者结合确保机器人既能找到最优路径,又能适应动态环境变化。实验结果表明,该方法在路径长度、计算效率与避障性能方面均优于单独使用GSA或DWA,为复杂环境下的机器人自主导航提供了一种高效、鲁棒的解决方案。 Mobile robot path planning is a core problem in autonomous navigation,encompassing global path optimization and local obstacle avoidance control.A hybrid path planning method is proposed that integrates an improved gravitational search algorithm(GSA)with the dynamic window approach(DWA)to enhance the autonomous motion capabilities of robots in complex environments.First,the improved GSA employs nonlinear time-varying gravity adjustment,enhanced local search,and individual motion optimization to improve the quality and efficiency of global path planning.Then,during local path planning,DWA utilizes velocity sampling and dynamic evaluation mechanisms to achieve real-time obstacle avoidance and trajectory optimization.The integration of these two approaches ensures that the robot can find the optimal path while adapting to dynamic environmental changes.Experimental results demonstrate that the proposed method outperforms standalone GSA and DWA in terms of path length,computational efficiency,and obstacle avoidance performance,providing an efficient and robust solution for autonomous robot navigation in complex environments.
作者 张纪民 董峰 ZHANG Jimin;DONG Feng(Department of Information Engineering,Ruzhou Vocational and Technical College,Ruzhou 467500,China;School of Telecommunications and Inteligent Manufacturing,Sias University,Zhengzhou 450000,China)
出处 《传感器与微系统》 北大核心 2025年第8期110-114,119,共6页 Transducer and Microsystem Technologies
基金 河南省科技攻关项目(242102110377)。
关键词 移动机器人 路径规划 引力搜索算法 动态窗口法 mobile robot path planning GSA DWA
  • 相关文献

参考文献4

二级参考文献29

共引文献152

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部