期刊文献+

基于用户情感倾向感知的微博情感分析方法 被引量:7

User sentiment tendency aware based Micro-blog sentiment analysis method
原文传递
导出
摘要 微博言论往往带有强烈的情感色彩,对微博言论的情感分析是获取用户观点态度的重要方法。许多学者都是将研究的重点集中在句子词性、情感符号以及情感语料库等方面,然而用户自身的情感倾向性并没有受到足够的重视,因此,提出了一种新的微博情感分类方法,其通过建模用户自身的情感标志得分来帮助识别语句的情感特征,具体地讲,将带有情感信息的微博语句词向量序列输入到长短期记忆网络(LSTM),并将LSTM输出的特征表示与用户情感得分进行结合作为全连接层的输入,并通过Softmax层实现了对微博文本的情感极性分类。实验表明,提出的方法UA-LSTM在情感分类任务上的表现超过的所有基准方法,并且比最优的基准方法MF-CNN在F1值上提升了3.4%,达到0.91。 Micro-blog's speech often has strong sentimental color, and the sentiment analysis of Micro-blog's speech is an important way to get users' opinions and attitudes. Many researchers conduct research via focusing on the parts of speech(POS), emotion symbol and emotion corpus. This paper proposes a novel method for Micro-blog sentiment analysis, which aims to identify the sentiment features of a text by modeling user sentiment tendency. Specifically, we construct a sentiment information embedded word embedding sequence, and input it into a long short term memory(LSTM) model to get a sentiment embedded output representation. Then we merge both the user sentiment tendency score and the output representation of LSTM, and use it as the input of a fully connected layer which is followed by a softmax layer to get the final sentiment classification result. The experiment shows that the performance of our proposed method UA-LSTM is better than all the baseline methods on the sentimental classification task, and it achieves the F1-score up to 0.91, with an improvement of 3.4% over the best baseline method MF-CNN.
作者 吴洁 朱小飞 张宜浩 龙建武 黄贤英 杨武 Jie WU;Xiao-fei ZHU;Yi-hao ZHANG;Jian-wu LONG;Xian-ying HUANG;Wu YANG(School of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China)
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2019年第3期46-55,共10页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(61702063 61502064 61502065) 国家社会科学基金资助项目(17XXW005) 重庆市基础科学与前沿技术研究项目(cstc2017jcyjBX0059 cstc2015jcyjBX0127 cstc2017jcyjAX0144 cstc2017jcyjAX0339 cstc2017jcyjAX0144) 重庆市教委人文社科重点研究项目(17SKG136)
关键词 情感分析 长短期记忆网络 用户情感倾向 sentiment analysis long short term memory user sentiment tendency
  • 相关文献

参考文献15

二级参考文献184

  • 1徐凤亚,罗振声.文本自动分类中特征权重算法的改进研究[J].计算机工程与应用,2005,41(1):181-184. 被引量:57
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 3Wiebe J,Wilson T,Bruce R,et al.Learning subjective language[J]. Computational Linguistics, 2004,30(3 ) : 277-308.
  • 4Yu Hong,Hatzivassiloglou V.Towards answering opinion questions[C]// Proceeding of EMNLP, 2003.
  • 5Yi J,Nasukawa T,Bunescu R,et al.Sentiment analyzer:Extracting sentiments about a given topic using natural language processing techniques[C]//Proceeding of the Third IEEE International Conference on Data Mining,2003.
  • 6Hu Ming--qing,Liu BingaMining and summarizing customer reviews[C]// Proceedings of the Tenth ACM SIGKDD,2004:168-177.
  • 7Wang Chao,Lu Jie,Zhang Guang-quan.A semantic classification approach for online product reviews[C]//Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence(W/' 5) ,2005.
  • 8HowNet[R/OL].HowNet's Home Page.http://www.keenage.com.
  • 9赵军,许洪波,黄萱菁,谭松波,刘康,张奇.中文倾向性分析评测技术报告[C]//第一届中文倾向性分析评测会议(The First Chinese Opinion Analysis Evaluation).COAE,2008.
  • 10王根,赵军.基于多重冗余标记CRFs的句子情感分析研究[J].中文信息学报,2007,21(5):51-55. 被引量:31

共引文献997

同被引文献114

引证文献7

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部