期刊文献+

科学教育中的计算思维:理论框架与课程设计 被引量:17

Computational Thinking in Science Education: Theoretical Framework and Curriculum Design
在线阅读 下载PDF
导出
摘要 计算思维(Computational Thinking)的培养在国外科学教育领域初见端倪,其中相关理论与课程实践还不成熟。该文从观念、思维和实践三个层面构建了科学教育的计算思维理论框架,层层递进。在观念层面计算作为认识论和方法论与科学具有本质联系,从而影响其思维层面的基本属性——抽象、模拟和自动化,这些思维属性体现在建模与模拟、数据收集与分析等科学实践上。然后,基于该理论框架,结合课程案例,从目标、内容和评价三个方面探讨了如何设计整合计算思维的科学课程。最后,在教育信息化2.0的时代背景下,为我国整合计算思维的科学课程的发展提出若干建议。 The cultivation of computational thinking has begun to take shape in the field of science education abroad. Nevertheless, the related theories and curriculum implementations are not yet mature. This paper constructs a three-levels theoretical framework of computing thinking in science education. At the conceptual level, computation has an essential connection with science epistemologically and methodologically, thus affecting the basic attributes of computing at the level of thinking, namely abstract, simulation and automation, all of which are reflected in scientific practices such as modeling and simulation, and data collection and analysis. Based on the theoretical framework, it is discussed that how to integrates computing thinking into science curriculum in three aspects: goal, content, and assessment. Finally, the suggestions for the development of the science curriculum integrating computational thinking in China are put forward.
作者 周佳伟 王祖浩 Zhou Jiawei1, Wang Zuhao2(1.College of Teacher Education East China Normal University, Shanghai 200062; 2.Institute of Curriculum and Instruction East China Normal University, Shanghai 20006)
出处 《中国电化教育》 CSSCI 北大核心 2018年第11期72-78,共7页 China Educational Technology
基金 教育部人文社会科学重点研究基地重大项目"基于核心素养的课程标准研制的关键问题研究"(项目编号:17JJD880007)子课题"跨学科核心素养研究"的研究成果
关键词 计算思维 科学课程 教育信息化 Computational Thinking Science Education Scientific Practice Science Curriculum
  • 相关文献

参考文献5

二级参考文献35

  • 1邓峰,钱扬义.利用手持技术对学生学习溶解氧认知过程初探——信息技术在研究性学习中的应用[J].化学教育,2006,27(6):32-34. 被引量:18
  • 2刘晓华.中学生运用手持技术解决化学定量问题的实验研究(下)[J].化学教育,2006,27(6):52-53. 被引量:6
  • 3崔建中,栗庆.情报意识的结构和功能[J].情报杂志,1996,15(6):12-13. 被引量:8
  • 4钱扬义,邓峰.数字化化学探究实验室的建设与学生探究能力的培养[J].中国电化教育,2006(11):49-52. 被引量:33
  • 5祝智庭 刘雍潜 黎加厚译.面向学生的美国国家教育技术标准—课程与技术整合[M].中央广播电视大学出版社,2002.9.
  • 6张华.主导基础教育课程改革的五种理念[N].中国教育咨询报,2002.3.20.
  • 7石中英尚志远.后现代知识状况与基础教育课程改革,教育探索杂志(在线).http://netbook.hi.cninfo.net/netbook/28.htm(20/07/2003),.
  • 8国家基础教育课程改革“促进教师成长和学生发展的评价体系的研究”项目组.关于学生评价改革的几个问题.http://jjez.jjedu.org/jtzs/kegg/02.htm(21/07/2003),.
  • 9Liew, Chong-Wah; Treagust, David. The Effectiveness of Predict-Observe-Explain Tasks in Diagnosing Students Understanding of Science and in Identifying Their Levels of Achievement[R]. San Diego, CA:The Annual Meeting of The American Educational Research Association, 1998.
  • 10Daryl Adams and John W Shrum. The Effects of Microcomputer-Based Laboratory Exercises on the Acquisition of Line Graph Construction and Interpretation Skills by High School Biology Students[R]. Lake of the Ozarks, MO:The Annual Meeting of the National Association for Research in Science Teaching, 1988.

共引文献176

同被引文献153

引证文献17

二级引证文献202

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部