期刊文献+

基于深度自编码网络的慢速移动目标检测 被引量:6

SlowMoving Target Detection Based on Deep Self-coding Network
在线阅读 下载PDF
导出
摘要 强杂波背景下的慢速目标检测存在低多普勒频移、杂波干扰严重、鲁棒性不足、特征提取困难与信息利用不充分等问题。为此,提出一种基于深度自编码网络的宽带信号目标检测方法。利用时频变换解析回波信息,通过深度自编码网络算法,在时频域提取针对目标的深度抽象信息进行目标检测,以准确感知环境变化。仿真结果表明,与支持向量机、超限学习机和后向传播神经网络等传统机器学习相比,该方法可以有效感知环境变化,具有较高的鲁棒性和检测性能。 The slow target detection in the background of strong clutter has such problems as low Doppler frequency shift,clutter interference,lack of robustness,feature extraction difficulties and inadequate information utilization.Therefore,a target detection method of wideband signal based on deep self-coding network is proposed.The echo information is analyzed by using time-frequency transform,and the deep self-coding network algorithm is used to extract the target deep abstract information in the time-frequency domain for target detection to accurately sense the environmental change.Simulation results show that compared with traditional machine learning such as Support Vector Machine(SVM),Extreme Learning Machine(ELM) and Back Propagation Neural Network(BPNN),the proposed method can effectively detect environmental changes and has high robustness and detection performance.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第2期129-134,共6页 Computer Engineering
基金 国家自然科学基金(61362006 61571143) 广西无线宽带通信与信号处理重点实验室基金(GXKL061501) 广西自然科学基金(2014GXNSFBA118288 2014GXNSFAA118387)
关键词 目标检测 深度学习 自编码神经网络 特征提取 机器学习 target detection deep learning self-coding neural network feature extraction machine learning
  • 相关文献

参考文献3

二级参考文献18

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2Tenenbaum J B, Silva V de, and Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323.
  • 3Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290: 2323-2326.
  • 4Rahimi A, Recht B, and Darrell T. Learning to transform time series with a few examples [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1759-1775.
  • 5Wang Liang and Suter D. Learning and matching of dynamic shape manifolds for human action recognition [J]. IEEE Trans. on Image Processing, 2007, 16(6): 1646-1661.
  • 6Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507.
  • 7Zeng Xian-Hua, Luo Si-Wei, and Wang Jiao. Auto-associative neural network system for recognition [C]. Proceedings of the sixth international conference on machine learning and cybernetics, Hong Kong, 2007: 2885-2890.
  • 8Hinton G E. Training products of experts by minimizing contrastive divergence. Neural Computation[J]. 2000, 14(8): 1771-1800.
  • 9Chen H and Murray A F. A continuous restricted Boltzmann machine with hardware-amenable learning algorithm [C]. Proceedings of 12th Int. Conf. on Artificial neural networks (ICANN2002), Madrid, Spain, 2002: 358-363.
  • 10Chen H and Murray A F. Continuous restricted Boltzmann machine with an implementable training algorithm [J]. IEE Proceedings of Vision, Image and Signal Processing, 2003, 150(3): 153-158.

共引文献98

同被引文献49

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部