期刊文献+

基于改进广义回归神经网络和主成分分析的宽带DOA估计 被引量:2

A novel wideband direction-of-arrival estimation alg orithm based on improved GRNN and PCA
原文传递
导出
摘要 为了获取较高的宽带信号的DOA(direction-of-arrival)估计精度,提出了基于改进的广义回归神经网络(IGRNN,improved generalized regression neural network)和主成分分析(PCA,principalcomponent analysis)的宽带DOA估计算法。选用PCA方法对训练样本进行降维,以降低神经网络的复杂度;利用粒子群算法优化GRNN的参数;根据选取不同的聚焦角度确定粗估计、精估计的训练模型,通过粗估计得出目标的大致方位后,利用精估计模型得出最终的估计结果,避免了聚焦角度对估计精度的影响。仿真结果表明,本文提出的算法具有较好的估计精度和较高的工作效率。 A novel wideband direction-of-arrival estimation algorithm based on improved generalized regression neural network(IGRNN)and principal component analysis(PCA) is proposed in order to obtain high estimation precision.Firstly,the PCA method is used to lower the dimension of train samples in order to reduce the complexity of GRNN whose parameters are optimized by particle swarm optimization algorithm.At the same time,accurate and rough estimation models are established respectively according to different focusing angles.The accurate model is used for DOA estimation after rough estimation to avoide the influence of focusing angles.Simulation results show that our algorithm has high estimation precision and efficiency.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第4期692-696,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61001150) 船舶工业国防科技预研基金(10J3.5.2) 江苏高校优势学科建设工程和江苏省研究生培养创新工程(CX10B-110Z)资助项目
关键词 宽带DOA(direction-of-arrival)估计 粒子群算法 广义回归神经网络(GRNN) 聚焦角度 主成分分析(PCA) wideband direction-of-arrival(DOA) estimation particle swarm optimization generalized regression neural network(GRNN) focusing angle principal component analysis(PCA)
  • 相关文献

参考文献16

二级参考文献86

共引文献67

同被引文献27

  • 1Nelson J F, Michael C, Jean L, et al. On the design of a compactneural network-based DOA estimation system [ J]. IEEE Trans onAntennas and Propagation, 2010,58(2) : 357-366.
  • 2Shi Yuhui, Eberhart R C. A modified particle swarm optimizer [C] //Proc of IEEE International Conference on Evolutionary Computation.1998: 69-73.
  • 3Rumelhart D E, Hinton G E,Williams R J. Learning re-presentationsby back-propagation error [ J]. Nature, 1986, 323(9) : 533-536.
  • 4Veronese L, Krohling R. Swarm’s flight: accelerating the particlesusing C-CUDA [ C]//Proc of IEEE Congress on Evolutionary Compu-tation. 2009: 3264-3270.
  • 5Kromer P, Platos J, Snasel V. A brief survey of advances in particleswarm optimization on graphic processing units [ C ] //Proc of IEEEWorld Congress on Nature and Biologically Inspired Computing.2013: 182-188.
  • 6Jang H, Park A, Jung K. Neural network implementation using CU-DA and Open MP [ C] //Proc of International Conference on DigitalImage Computing: Techniques and Applications. 2008 : 155-161.
  • 7Scanzio S, Cumani S, Gemello R, et al. Parallel implementation ofartificial neural network training [ C ]//Proc of IEEE InternationalConference on Acoustics Speech and Signal. 2010 : 4902-4905.
  • 8Pethick M,Liddle M, Werstein P, et al. Parallelization of a back-propagation neural network on a cluster computer [ C ]//Proc of the15th IASTED International Conference on Parallel and Distributed.
  • 9李祚泳,汪嘉杨,郭淳.PSO算法优化BP网络的新方法及仿真实验[J].电子学报,2008,36(11):2224-2228. 被引量:56
  • 10张国锁,周创明,雷英杰.改进FCM聚类算法及其在入侵检测中的应用[J].计算机应用,2009,29(5):1336-1338. 被引量:15

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部