期刊文献+

量子门线路神经网络及其改进学习算法研究 被引量:5

Research on quantum gate circuit neural network and improved learning algorithm
在线阅读 下载PDF
导出
摘要 量子门线路神经网络(QGCNN)是一种直接利用量子理论设计神经网络拓扑结构或训练算法的量子神经网络模型。动量更新是在神经网络的权值更新中加入动量,在改变权值向量的同时提供一个特定的惯量,从而避免权值向量在网络训练过程中持续振荡。在基本的量子门线路神经网络的学习算法中引入动量更新原理,提出了一种具有动量更新的量子门线路网络算法(QGCMA)。研究表明,QGCMA保持了网络100%的收敛率,同时,相对于基本算法,在具有相同学习速率的情况下,提高了网络的收敛速度。 Quantum Gate Circuit Neural Network(QGCNN)is a kind of quantum neural network model, which directly uses quantum theory to design the neural network topology or training algorithms. In the neural network, Momentum update is adding momentum parameter in weight renew and provides a specific inertia while renewing weight vector. It avoids sustained oscillation of weight vector in network training. It introduces the principle of momentum update in the basic learning algorithm of Quantum Gate Circuit Neural Network, proposes Quantum Gate Circuit neural network Momentum update Algorithm(QGCMA). The research shows that QGCMA has 100% convergence rate and enhances convergence speed compared to the basic algorithm with the same learning rate.
作者 侯旋
出处 《计算机工程与应用》 CSCD 2014年第6期213-218,共6页 Computer Engineering and Applications
关键词 量子神经网络 量子计算 量子门 动量更新 学习算法 权值 Quantum Neural Network (QNN) quantum computation quantum gate momentum update leaming algo-rithm weight
  • 相关文献

参考文献23

  • 1Rabunal J R, Dorado J.Artificial neural networks in real- life applications[M].[S.1.]:Idea Group Publishing,2005.
  • 2Gupta S,Zia R K P.Quantum neural networks[J].Joumal of Computer and System Science, 2001,63 : 355-383.
  • 3Narayanan A, Menneer T.Quantum artificial neural network architectures and components[J].Information Sciences,2000,128:231-255.
  • 4GriffithsDJ.量子力学概论[M].英文版,原书第2版.北京:机械工业出版社,2007.
  • 5DiracPAM.量子力学原理[M].英文版,第4版.北京:科学出版社,2008.
  • 6Jain A K, Duin R P W, Mao Jianchang.Statistical pattern recognition: a review[J].IEEE Transactions on Pattern Analy- sis and Machine Intelligence, 2000,22:4-33.
  • 7Ventura D.Quantum computing and neural information processing[J].Information Sciences,2000,128: 147-148.
  • 8Kak S.Quantum neural computing[J].Advances in Imaging and Electron Physics, 1995,94 : 259-313.
  • 9Ezhov A A, Ventur A D.Quantum nerual networks[M]// Kasabov N.Future Directions for Intellgent Systems and Information Sciences.Heidelberg: Springer-Verlag, 2000.
  • 10Kak S.On quantum neural computing[J].Information Sci- ences, 1995,83 : 143-160.

二级参考文献17

  • 1解光军,范海秋,操礼程.一种量子神经计算网络模型[J].复旦学报(自然科学版),2004,43(5):700-703. 被引量:18
  • 2解光军,周典,范海秋,操礼程.基于量子门组单元的神经网络及其应用[J].系统工程理论与实践,2005,25(5):113-117. 被引量:17
  • 3SHAPIRO J H,WONG F N. Attacking quantum key distribution with single-photon two-qubit quantum logic [ J ]. Phys Rev A,2006, 73: 012315.
  • 4MO Xiao-fan, ZHU Bing, HAN Zheng-fu, GUI You-zhen, GUO Guang-Can. Faraday-Michelson system for quantum cryptography [ J ]. Optics Letters, 2005, 30 (19) : 2632-2634.
  • 5MA L J, XU H,TANG X. Polarization recovery and autocompensation in quantum key distribution network E J ].Proc of SPIE, 2006,6305:630513.
  • 6ELLIOTF C, COLVIN A, PEARSON D, et al. Current status of the DARPA quantum network [ J]. Proc of SPIE, 2005,5815 : 138-149.
  • 7POPPE A, PEEV M, MAURHART O. Outline of the SECOQC quantum key distribution network in Vienna [ J ]. International Journal of Quantum Information (IJQI) ,2008, 6(2) : 209-218.
  • 8ZHANG Tao, MO Xiao-fan, HAN Zheng-fu, GUO Guang- can. Extensible router for a quantum key distribution network[ J]. Phys Lett A 2008,372(22) :3957-3962.
  • 9XIANG G Y,HUANG Y F,SUN F W,ZHANG P,OU Z Y, GUO G C. Demonstration of Temporal Distinguishability in a Four-Photon State and a Six-Photon State [ J ]. Phys Rev Lett 2006,97 : 023604.
  • 10HE L X, GONG M, LI C F, GUO G C,ZUNGER A. Highly Reduced Fine-Structure Splitting in InAs/InP Quantum Dots Offering an Efficient On-Demand Entangled 1.55-μm Photon Emitter[J]. Phys Rev Lett,2008, 101 : 157405 .

共引文献41

同被引文献54

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部