期刊文献+

基于图割与阴影邻接关系的高分辨率遥感影像建筑物提取方法 被引量:16

Building Extraction from High Resolution Remotely Sensed Imagery Based on Shadows and Graph-Cut Segmentation
在线阅读 下载PDF
导出
摘要 高空间分辨率遥感影像的建筑物自动提取能够加速城市基础地理数据库的更新进程.建筑物提取方法存在的一个亟需解决的问题是建筑物轮廓难以准确提取.本文通过建筑物的阴影特征和图割提出一种在高分辨率遥感影像中识别与提取建筑物的方法.首先,基于势直方图函数检测阴影;然后,以长宽比和矩形度作为约束条件从图割结果中筛选出候选分割对象;最后,利用开运算、膨胀和腐蚀分别对阴影进行处理,计算处理后的阴影和候选分割对象之间的邻接关系得到建筑物及其轮廓.为了验证本文方法的有效性,选取PLEIADES影像中6幅具有代表性的子图像进行试验,结果表明本方法的平均查准率和平均查全率分别达到92.31%和74.23%. Automatic building extraction from high spatial resolution remotely sensed imagery can accelerate the update process for urban basic geographic database. One problem of building extraction methods is the difficulty of extracting the pre- cise building contour. This article proposes an approach to recognizing and extracting buildings from high resolution remotely sensed imagery based on shadows and graph-cut segmentation. Firstly, shadows were detected by using potential histogram function. Then,candidate segmentation objects were selected from the result of graph-cut segmentation with the constraint by integrating aspect ratio and rectangularity. At last, shadows were processed with open, dilate and corrode operations respective- ly, while buildings and their exact boundaries were extracted with adjacency between processed shadows and candidate segmen- tation objects. For verifying the validity of the proposed method, six sub-images were chosen from PLEIADES images. Experi- mental results show that the average precision and recall of the proposed method are 92. 31% and 74. 23% respectively.
出处 《电子学报》 EI CAS CSCD 北大核心 2016年第12期2849-2854,共6页 Acta Electronica Sinica
基金 "十二五"国家科技支撑计划项目(No.2013BAC08B02-01) 国家重点基础研究发展计划项目课题(No.2006CB708306) 福建省教育厅项目(No.JB14038)
关键词 遥感影像 阴影 图割 建筑物提取 remotely sensed imagery shadows graph-cut building extraction
  • 相关文献

参考文献4

二级参考文献32

  • 1余鹏,张震龙,侯至群.基于高斯马尔可夫随机场混合模型的纹理图像分割[J].测绘学报,2006,35(3):224-228. 被引量:17
  • 2SIMONTON E, ORIOT H, GARELLO R. Rectangular Building Extraction from Stereoscopic Airborne Radar Images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10): 2386-2396.
  • 3CHA J, COFER R H, KOZAITIS S P. Extended Hough Transform for Linear Feature Detection [J]. Pattern Recognition, 2006, 39 (6) : 1034-1043.
  • 4SAMPATH A, SHAN J. Building Boundary Tracing and Regularization from Airborne Lidar Point Clouds[J]. Pho togrammetric Engineering & Remote Sensing, 2007, 73 (7) :805-812.
  • 5JIN X, DAVIS C H. Automated Building Extraction from High Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information [ J ]. EURASIP Journal on Applied Signal Processing, 2005, 2005(14) : 2196-2206.
  • 6ZHENG J L, SHI Y C, QIN Y. Building Extraction from High Resolution Satellite Imagery Based on Multi-Scale Image Segmentation and Model Matching[C]// International Workshop on Earth Observation and Remote Sensing Applications, Beijing, China. Beijing:[s. n.],2008, 1-7.
  • 7VLASSIS N, LIKAS A. The Kurtosis-Based Dynamic Approach to Gaussian Mixture Modeling [J]. IEEE Transactions on Systems, Man and Cybernetics, 1999, 29(4): 393-399.
  • 8XU L. Bayesian Ying-Yang Machine, Clustering and Number of Clusters [J]. Pattern Recognition Letters, 1997, 18(11): 1167-1178.
  • 9裴继红,博士学位论文,1998年
  • 10裴继红,西安电子科技大学学报,1997年,24卷,4期,463页

共引文献176

同被引文献142

引证文献16

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部