期刊文献+

热带森林植被生物量与遥感地学数据之间的相关性分析 被引量:35

Correlation analysis of the biomass of the tropical forest vegetation, meteorological data and topographical data
在线阅读 下载PDF
导出
摘要 以我国云南省西双版纳的热带森林为例,对热带森林植被生物量与遥感地学数据之间的相关性进行了分析。首先,利用森林资源连续清查的林业固定样地数据计算出各样地的森林植被生物量,并建立其GIS数据库。然后,对遥感图像进行几何校正,并对遥感图像进行主成分变换、缨帽变换以及植被指数的计算来产生其派生数据。其次,将样地数据、遥感数据及其派生数据,地形和气象数据转换到统一的坐标系和投影下,并将其内插为30米分辨率的格网数据。最后,进行样地森林植被生物量与其遥感地学数据之间的相关性分析。该分析表明,森林植被的生物量与年降雨量和第二主成分在0·01的水平上相关显著,而与中红外植被指数、LANDSATTM5、缨帽变换的亮度、湿度以及第一主成分在0·05的水平上相关显著。其中,与年降雨量的相关性最高,达到0·308;其次是与第二主成分,达到-0·231;再次是与中红外植被指数和LANDSATTM5,其相关系数分别为0·203和-0·201。 This paper analyses the correlations between the biomass of the tropical forest vegetation and LANDSAT TM data, meteorological data and topographical data taking Xishuangbanna of China's Yunnan province as an example. It includes four steps. Firstly, the biomass for each forest sample is calculated by using the field inventory data of each sample. GIS Database is established according to the coordinate of each forest sample. Secondly, the LANDSAT TM images are geometrically corrected by using topographic maps. The derivative data are derived from the LANDSAT TM images by using principal component analysis, tasseled cap transform and vegetation index analysis. Thirdly, the data including Landsat TM data and its derivative data, the topographical data such as DEM and aspect, and the climatic data such as annual mean temperature, annual average accumulative temperature above zero degree, annual average precipitation and humidity are referenced to the same projection and coordination, and interpolated as the grid data with a resolution of 30 m. The Landsat TM data and its derivative data, the topographical data and the climatic data for the samples are achieved by overlay analysis. Finally, the correlation between the LANDSAT TM and its derived data, meteorological data, topographical data and the biomass are analyzed. It is shown that the biomass of the tropical forest vegetation is most obviously correlated with annual average precipitation and the second principal component of the principal component analysis of LANDSAT TM at 0.01 confident level. The correlation coefficients are respectively 0.308 and -0.231. The biomass is obviously correlated with spectral index VI3, Landsat TM5, spectral index such as brightness and humidity of the Tasscap transform, the first principal component at 0.05 confident level. The correlation coefficients are respectively 0.308, -0.231, 0.203 and -0.201.
出处 《地理研究》 CSCD 北大核心 2005年第3期473-479,共7页 Geographical Research
基金 国家自然科学基金项目(40161007) 科技部863项目(2002a135230) 中国科学院知识创新项目(CX10G-E01-02-03) 四川省青年基金项目(03ZQ026-032)资助
  • 相关文献

参考文献19

二级参考文献35

  • 1周成虎.洪涝灾害遥感监测研究[J].地理研究,1993,12(2):63-68. 被引量:27
  • 2周广胜,张新时.中国气候-植被关系初探[J].植物生态学报,1996,20(2):113-119. 被引量:71
  • 3李德仁.论RS,GPS与GIS集成的定义、理论与关键技术[J].遥感学报,1997,1(1):64-68. 被引量:375
  • 4肖淑昭 孟宪钺.NOAA/AVHRR资料在中小尺度地区进行冬小麦估产的应用研究[J].环境遥感,1988,3(3):299-307.
  • 5肖乾广 周嗣松 等.用气象卫星数据对冬小麦进行估产试验[J].环境遥感,1986,(4):260-269.
  • 6中国科学院西南地区综合考察队川滇接壤地区农业分队.安宁河谷农业气候特征及分区[M].,1966,4..
  • 7徐建华,现代地理学中的数学方法,1996年
  • 8吴炳方,环境遥感,1995年,10卷,1期
  • 9周红妹,环境遥感,1995年,10卷,2期
  • 10Gong P,GIS’94,1994年

共引文献835

同被引文献618

引证文献35

二级引证文献492

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部