期刊文献+

基于多特征自适应融合的鲁棒跟踪方法

Robust tracking based on multi-feature adaptive fusion
在线阅读 下载PDF
导出
摘要 针对复杂场景下用单一特征描述目标导致的目标漂移问题,基于均值漂移(Mean Shift)跟踪框架,构建了一种有效的自适应融合特征(Adaptive Fusion Feature,AFF)描述子,并提出一种自适应融合多特征的跟踪方法。该方法融合了颜色特征和尺度不变特征转换(Scale-Invariant Feature Transform,SIFT),并通过相邻帧间各特征的相似性来自适应动态调整特征的权值。实验结果表明,在复杂场景下多特征自适应融合方法(AFF)比单一特征跟踪方法和经典跟踪方法减少了目标漂移、目标跟踪更加精确鲁棒。 Aimed at using single feature to describe the target often leads to target drift in complex scenes, aneffective Adaptive Fusion Feature (AFF) is constructed based on Mean Shift tracking framework, furthermore, atracking method which used multiple fusion features to describe target adaptively is put forward. This trackingmethod combined color feature and SIFT feature, the similarity between adjacent frames of each feature is used todynamically adjust the feature weights. The experimental results show that the proposed AFF tracking method ismore accurate and robust than single feature tracking and state-of-the-art tracking methods in complex scenes.
作者 龚春红 Gong Chunhong(Department of Information Management, Hunan University of Finance and Economics, Changsha 410205, China)
出处 《湖南文理学院学报(自然科学版)》 CAS 2016年第4期21-26,共6页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 湖南省重点学科建设项目 湖南省教育厅科学研究重点项目(13A010)
关键词 颜色特征 尺度不变特征转换 自适应融合特征 权值更新 color SIFT adaptive fusion feature weight updating
  • 相关文献

参考文献4

二级参考文献35

  • 1孙剑,周凤岐,周军.基于mean-shift的快速跟踪算法设计与实现[J].计算机工程,2006,32(15):37-38. 被引量:9
  • 2Haralick R M, Shanmuga M K, Dinstein I. Textural Feature for Image Classification[J]. IEEE Transactions on System, Man and Cybernetics, 1973, 3(6): 610-621.
  • 3Huang J, Kumar S R, Mitra M. Image Indexing Using Color Corre lograms[A]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition[C]. San Juan: Puerto, 1997:762 -768.
  • 4Vassili K, Stephan V. Color Cooccurrence Descriptors for Querying by Example[A]. Proceedings of IEEE International Conference on Multimedia Modeling[C]. Lausanne: Switzerland, 1998: 32-37.
  • 5KumarSahaSan joy, Kumardas Amit, Chanda Bhabatosh. CBIR Using Perception Based Texture and Colour Measures[A]. Proceedings of the 17th International Conference on Pattern Recognition[C]. Cambridge: U K, 2004: 985-988.
  • 6Palm Christoph. Color texture Classification by Integrative Co-occurrence Matrices[J]. Pattern Recognition, 2004, 37(5): 965-976.
  • 7Jhanwar N, Chaudhuri S, Seetharaman G, et al. Content based Image Retrieval Using Motif Cooccurrence Matrix[J] Image and Vision Computing, 2004, 22(14): 1211-1220.
  • 8Sanjeev M. A Tutorial on Particle Filters for Online Nonlinear/Non- Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 9Michael I. Condensation-Conditional Density Propagation for Visual Tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5-28.
  • 10Dorin C. Kernel-based Object Tracking[J]. IEEE Transactions on Pattern Analysis and Machine lntelfigence, 2003, 25(5): 564-577.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部