期刊文献+

基于混沌的PSO粒子滤波算法 被引量:4

Particle Swarm Optimization Particle Filtering Algorithm Based on Chaotic
在线阅读 下载PDF
导出
摘要 粒子群优化(PSO)粒子滤波算法容易陷入局部最优,从而降低算法精度。针对该问题,提出一种基于混沌的PSO粒子滤波算法。该算法通过混沌搜索算法找到全局最优位置,驱散聚集在局部最优的粒子群,使其向全局最优位置靠近,增加有效估计粒子数,抑制粒子退化与枯竭问题。仿真结果表明,与传统的粒子滤波算法和PSO粒子滤波算法相比,改进算法的估计精度有较大提高。 Particle Swarm Optimization Particle Filtering(PSOPF) algorithm is easy to fall into local optimum, so the particles can not move to the global optimal location, and reduce algorithm precision. According to this problem, the paper proposes a Particle Swarm Optimization Particle Filtering based on Chaotic(CPSOPF) algorithm. Through the chaotic search algorithm, this algorithm makes particles find the global optimal location, dispels particle swarm at local optimum location and makes them move to global optimal location. So the number of effective particles increases, which can effectively restrain particles degradation and exhaustion. Simulation results show that the CPSOPF algorithm can remarkably improve the estimation accuracy compared with of the conventional Particle Filtering(PF) and the traditional PSOPF algorithm.
出处 《计算机工程》 CAS CSCD 2012年第8期134-136,140,共4页 Computer Engineering
基金 甘肃省自然科学基金资助项目(1014RJZA028)
关键词 粒子滤波 混沌搜索算法 粒子群优化算法 局部最优 粒子退化 粒子枯竭 Particle Filtering(PF) chaotic search algorithm Particle Swarm Optimization(PSO) algorithm local optimal particle degeneracy
  • 相关文献

参考文献11

二级参考文献64

共引文献227

同被引文献32

  • 1萧德云,莫以为.基于混合系统状态估计的故障诊断[J].自动化学报,2004,30(6):980-985. 被引量:7
  • 2方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 3X G Wang, T Kinh, W E L Grimson. Correspondence-free activi- ty analysis and scene modeling in multiple camera views [ J 1. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2010, 32(1) :56-71.
  • 4K Bogdan. Finding location using a particle filter and histogram matching[ C ]. Proceedings of Artificial Intelligence and Soft Com- puting, 2004:786-791.
  • 5A Doucet. On sequential simulation based methods for Bayesian fil- tering[ J]. Statistics and Computing , 1998 , 10 (3) : 197-208.
  • 6S Thrum Particle filters in robotics [ C ]. Proc of Uncertainty in AI : San Francisco : Morgan Kaufmann Publishers, 2002 : 511-518.
  • 7C Qi, P Bondon. A new unscented particle filter[ C ]. IEEE Inter- national Conference on Acoustics, Speech and Signal Processing, 2008:3417-3420.
  • 8M A de Oca, et al. Frankenstein' s PSO. A Composite Particle Swarm Optimization Algorithm [ J ]. IEEE Trans. on Evolutionary Computation, 2009,13 (5) : 1120-1132.
  • 9席涛,张胜修,原魁,颜诗源.基于遗传进化策略的粒子滤波视频目标跟踪[J].光电工程,2009,36(3):28-32. 被引量:12
  • 10郭晓松,李奕芃,郭君斌.粒子滤波算法及其应用研究[J].计算机工程与设计,2009,30(9):2264-2266. 被引量:19

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部