期刊文献+

基于多特征融合的粒子滤波视频跟踪算法 被引量:7

Video Tracking Algorithm of Particle Filtering Based on Multi-feature Fusion
在线阅读 下载PDF
导出
摘要 将颜色特征和边缘特征融合在粒子滤波跟踪框架中,并在原有跟踪算法的基础上提出改进算法,加入许多优化机制,包括利用HSV颜色模型对目标颜色特征进行核密度无参估计,使用更符合目标实际运动特性的动态模型以及利用均值偏移聚类粒子等。同时,在边缘特征匹配中引入均值偏移,通过加入边缘预处理过程,使各粒子权值的分布更加符合实际情况。实验结果表明,该算法具有较好的鲁棒性和实时性。 This paper fuses the features of both color and edge in particle filter tracking framework, and proposes an improved tracking algorithm by introducing several optimization factors, such as describing the color feature of target using kernel density estimation under HSV color model, using more practical motion model in particle filtering, clustering the particles with mean shift algorithm, and reordering the steps of clustering and resampling. Additionally, it also improves the edge matching method by introducing mean shift. Such method adds a pretreatment of the edge information into the matching process that makes the distribution of particle weights more rational. Experimental results show this algorithm has better robustness and real-time ability.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第22期228-230,235,共4页 Computer Engineering
基金 重庆市计算机网络与通信技术重点实验室基金资助项目(CY-CNCL-2008-02)
关键词 视频跟踪 粒子滤波 均值偏移 HSV模型 边缘匹配 video tracking particle filtering mean shift HSV model edge matching
  • 相关文献

参考文献7

二级参考文献21

  • 1姚剑敏,许廷发,倪国强.一种基于优化小波特征的非线性目标跟踪算法[J].光学精密工程,2007,15(3):428-433. 被引量:5
  • 2孙仲康 沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985..
  • 3Dorin C,Peter M.Robust Analysis of Feature Spaces:Color Image Segmentation[C].Proc.of IEEE Conf.on Comp.Vis.and Pattern Recognition,Puerto Rico,1997:750-755.
  • 4Dorin C,Peter M.Mean Shift:A Robust Approach Toward Feature Space Analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 5Dorin C,Visvanathan R,Peter M.Real-time Tracking of Non-rigid Objects Using Mean Shift[C].Proc.of IEEE Conf.Computer Vision and Pattern Recognition,2000:142-149.
  • 6Fukunaga K,Hostetler L D.The Estimation of the Gradient of a Density Function,with Applications in Pattern Recognition[J].IEEE Trans.Info.Theory,1975,IT-21(1):32-40.
  • 7张清.视频网络中目标跟踪技术研究[D].西安:西北工业大学,2005.
  • 8Munir A, Atherton D P. Maneuvering Target Tracking Using an Adaptive Interacting Multiple Model Algorithm[J]. Proceedings of American Control Conference, 1994, 2: 1324-1328.
  • 9CHOI M S, KIM W Y. A novel two stage template matching for rotation and illumination invariance[J]. Pattern Recognition. 2002, 35(1): 119-129.
  • 10BORGEFORS G. Hierarchical Chamfer Matching: a Parametric Edge Matching Algorithm[J]. IEEE Trans on PAMI, 1998, 10(6): 849-865.

共引文献36

同被引文献47

  • 1常发亮,马丽,刘增晓,乔谊正.复杂环境下基于自适应粒子滤波器的目标跟踪[J].电子学报,2006,34(12):2150-2153. 被引量:20
  • 2方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 3Spengler M, Schiele B. Towards Robust Multi-cue Integration for Visual Tracking[J]. International Journal of Machine Vision and Applications, 2003, 14(1): 50-58.
  • 4Stem H, Efros B. Adaptive Color Space Switching for Face Tracking in Multi-colored Lighting Environments[C]//Proc. of the 5th IEEE International Conference on Automatic Face and Gesture Recognition. [S. l.]: IEEE Press, 2002: 235-241.
  • 5Paul B, Lyudmila M, David B, et al. Sequential Monte Carlo Tracking by Fusing Multiple Cues in Video Sequences[J]. Image and Vision Computing, 2007, 28(1): 1217-1227.
  • 6Wang Junqiu, Yagi Y. Integrating Color and Shape-texture Features for Adaptive Real-time Object Tracking[J]. IEEE Trans. on Image Processing, 2008, 17(2): 235-240.
  • 7Collins R T, Liu Yanxi. On-line Selection of Discriminative Track- ing Features[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1631-1643.
  • 8Nummiaro K, Koller-Meier E, Gool L V. An Adaptive Color-based Particle Filter[J]. Image and Vision Computing, 2003, 21(1): 99-110.
  • 9Yang Changjiang, Duraiswami R, Davis L. Fast Multiple Object Tracking via a Hierarchical Particle Filter[C]//Proc. of the 10th International Conference on Computer Vision. Washington D. C., USA: IEEE Computer Society, 2005: 212-219.
  • 10Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE Computer Society, 2005: 886-893.

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部