期刊文献+

基于多种群协同微粒群优化的流数据聚类算法 被引量:8

Streaming data clustering using cooperative particle swarm optimization
原文传递
导出
摘要 针对流数据的实时、有序和维数高等特点,提出一种基于多种群协同微粒群优化的流数据聚类算法.该算法利用变量分而治之的思想,多个种群协同优化多个类中心,进而求出问题完整的类中心集合.给出一种类中心变化趋势的预估策略,以快速追踪环境变化.为防止多个子微粒群同时优化一个类中心,提出一种相似子微粒群的合并策略.最后将所提出的算法用于多个数据集,实验结果验证了算法的有效性. Focusing on the stream data real time performance, orderliness, and high dimension, a streaming data clustering algorithm based on cooperative particle swarm optimization is proposed, which divides sequential stream data into several data subsets according to the time stamp. For any data subset, the high-dimensional clustering problem is firstly transformed into the low dimensional sub-problem with only one class center. Then, one sub-swarm optimizes one clustering sub-problem independently, and all the sub-swarms cooperate with each other to find the whole solution of the streaming data. Moreover, in order to enhance the speed of tracking the environment changes, a forecast strategy is designed to predict the change trend of class centers. In order to avoid multiple sub-swarms repeatedly searching for the same class center, a merging strategy of similar sub-swarms is proposed. Finally, the proposed algorithm is applied to multiple data sets, and experimental results show the effectiveness.
出处 《控制与决策》 EI CSCD 北大核心 2016年第10期1879-1883,共5页 Control and Decision
基金 国家自然科学基金项目(61473299) 中国博士后科学基金项目(2014T70557 2012M521142) 江苏省博士后科学基金项目(1301009B)
关键词 流数据 协同微粒群 聚类 预估 stream data cooperative particle swarm optimization clustering forecast
  • 相关文献

参考文献17

  • 1孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1105
  • 2Sun J G, Liu J, Zhao L Y. Clustering alorithms research[J]. J of Software, 2008, 19(1): 48-61.
  • 3付柳强,张洪伟,徐开阔.基于k-means的量子微粒群动态聚类[J].四川理工学院学报(自然科学版),2013,26(6):28-32. 被引量:1
  • 4L Q, Zhang H W, Xu K K. Quantum-behaved particle swarm dynamic clustering based on K-means[J]. J of Sichuan University of Science & Engineering: Natural Science Edition, 2013, 26(6): 28-32.
  • 5Aljarah I, Ludwig S A. Towards a scalable intrusion detection system based on parallel pso clustering using mapreduce[C]. Proc of the 15th Annual Conf Companion on Genetic and Evolutionary Computation. Cancun: ACM, 2013: 169-170.
  • 6Yingmei L,Weining X, Yuyan H, et al. Research on stream data clustering based on swarm intelligence[C]. Int Conf on Computer Science and Network Technology. Harbin: IEEE, 2011, 1: 573-576.
  • 7Ke L, Lin W. Data streams clustering algorithm based on grid and particle swarm optimization[C]. Int Forum on Computer Science-Technology and Applications. Chongqing: IEEE, 2009, 1: 93-96.
  • 8Elsayed S M, Sarker R A, Essam D L. Multi-operator based evolutionary algorithms for solving constrained optimization problems[J]. Computers & Operations Research, 2011, 38(12): 1877-1896.
  • 9Potter M A, De Jong K A. A cooperative coevolutionary approach to function optimization[M]. Parallel Problem Solving from Nature-PPSN III. Berlin: Springer-Heidelberg, 1994: 249-257.
  • 10Li X, Yao X. Cooperatively coevolving particle swarms for large scale optimization[J]. IEEE Trans on Evolutionary Computation, 2012, 16(2): 210-224.

二级参考文献22

共引文献1107

同被引文献60

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部