期刊文献+

融合微粒群的多种群协同进化免疫算法 被引量:9

Multi-population coevolutionary immunodominance clonal selection algorithm combining particle swarm optimization
原文传递
导出
摘要 提出一种融合微粒群的多种群协同免疫优势克隆选择算法(PMCICA).该算法将生态学中的协同进化思想引入人工免疫算法中,各子种群内部通过免疫优势克隆选择操作加快了种群收敛速度;所有子种群共享经过改进微粒群优化的高层优良库,实现了整个种群信息共享与协同进化.针对旅行商问题(TSP)的多个实验结果表明,该算法在收敛速度与最优解等方面均取得了较好的效果. Multi-population coevolutionary immunodominance clonal selection algorithm combining particle swarm optimization(PMCICA) is proposed.Enlightened by the knowledge of ecological environment and population competition, the cooperative evolution in the field of ecology is incorporated into artificial immune system.The convergent speed of algorithm is enhanced by local optimization immunodominance operating,clonal selection operation within the species. All subpopulations share one memory which is also used as a leader set consisting of the dominant representatives of each evolved subpopulation.The high level memory is optimized by using an improved particle swarm optimization(IPSO). Through those operations,information is shared among populations for co-evolution.The experiments on traveling salesman problems(TSP) benchmarks show that the proposed algorithm is capable of improving the search performance significantly in convergent speed and precision.
出处 《控制与决策》 EI CSCD 北大核心 2010年第11期1657-1662,共6页 Control and Decision
基金 国家自然科学基金重点项目(60634020) 湖南省科技计划重点项目(2010GK2022)
关键词 人工免疫系统 克隆选择 改进微粒群 协同进化 旅行商问题 Artifical immune system Clonal selection Improved particle swarm optimization Co-evolution TSP
  • 相关文献

参考文献16

  • 1de Castro L N, Zuben F J V. Learning and optimization usingthe clonal selection principle[J]. IEEE Trans on Evolutionary Computation, 2002, 6(3): 239-251.
  • 2Dasgupta D. Advances in artificial immune systems[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 40-49.
  • 3Kumlachew M W, Gary G Y. Vaccine-enhanced artificial immune system for multimodal function optimization[J]. IEEE Trans on Systems, Man and Cybernetics: Part B, 2010, 40(1): 218-228.
  • 4Amanda M Whitbrook, Uwe Aickelin, Jonathan M Garibaldi. Idiotypic immune networks in mobile-robot control[J]. IEEE Trans on Systems, Man and Cybernetics: Part B, 2007, 37(6): 1581-1597.
  • 5Aldo Canova, Fabio Freschi, Michele Tartaglia. Multi- objective optimization of parallel cable layout[J]. IEEE Trans on Magnetic, 2007, 43(10): 3914-3920.
  • 6Potter M A, de Jong K A. A cooperative coevolutionary approach to function optimization[C]. Proc of the 3rd Parallel Problem Solving from Nature. Berlin: Springer- Vedag, 1994: 249-257.
  • 7宋丹,傅明.基于多种群的自适应免疫进化计算[J].控制与决策,2005,20(11):1251-1255. 被引量:4
  • 8吴秋逸,李阳阳,焦李成.量子协同免疫算法用于SAT问题的求解[J].系统工程与电子技术,2009,31(6):1441-1445. 被引量:2
  • 9Eberhart R, Kennedy J A. New optimizer using particle swarm theory[C]. Proc of Int Symposium on Micromachine and Human Science. Nagoya: IEEE Press, 1995: 39-43.
  • 10尚玉吕,蔡晓明.普通生态学[M].北京:北京大学出版社,1996.

二级参考文献32

  • 1邹琳,夏巨谌,胡国安.基于实数编码的多种群并行遗传算法研究[J].小型微型计算机系统,2004,25(6):982-986. 被引量:21
  • 2王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 3胡小兵,黄席樾.基于混合行为蚁群算法的研究[J].控制与决策,2005,20(1):69-72. 被引量:29
  • 4尚玉昌 蔡晓明.普通生态学[M].北京:北京大学出版社,1996..
  • 5Selman B, Kautz H A, Cohen B. Noise strategies for improving local search[ C] // Proc. of the 12th National Conference on Artificial Intelligence, American Association for Artificial Intelligence, Seattle, Washington, 1994 : 337 - 343.
  • 6Folino G, Pizzuti C, Spezzano G. Parallel hybrid method for SAT that couples genetic algorithms and local search[J]. IEEE Trans. on Evolutionary Computation, 2001, 5(4) : 323 - 334.
  • 7Li Y Y, Jiao L C. Quantum-inspired immune clonal algorithm[C]//Proc. of the 4th International Conference on Artificial Immune Systems, Banff, Alberta, Canada, Aug 2005:304- 317
  • 8Jiao L C, Li Y Y, Gong M G, et al. Quantum-inspired immune clonal algorithm for global optimization[J]. IEEE Trans. on System, Man, and Cybernetics, Part B, 2008, 38 (5): 1234 - 1253.
  • 9Li Y Y, Jiao L C, Gou S P. Quantum-inspired immune clonal algorithm for multiuser detection in DS-CDMA Systems[C]// Proc. of Simulated Evolution and Learning, Lecture Notes in Computer Science, 2006,4247 : 80 - 87.
  • 10Gou S P, Jiao L C, Li Y Y, et al. Kernel matching pursuit based on immune elonal algorithm for image reeognition[C]//Proc, of Simulated Evolution and Learning, Lecture Notes in Computer Science, Hefei, China October 15 - 18, 2006,4247 : 26 - 33.

共引文献229

同被引文献116

引证文献9

二级引证文献547

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部