期刊文献+

基于单细胞RNA测序数据的细胞类型聚类算法 被引量:2

Cell type clustering algorithm based on single-cell RNA sequencing data
在线阅读 下载PDF
导出
摘要 随着单细胞测序技术的发展,许多基于单细胞RNA测序数据的聚类算法被提出,用于单细胞分类,并取得较好的应用效果。但是到目前为止,单细胞聚类算法研究领域缺乏关于聚类模型的综述,缺乏对不同聚类模型的性能评估。本文从聚类模型的角度将常见的11种单细胞聚类算法分成了K邻近聚类、层次聚类、基于图形分类、基于模型分类、基于密度分类的5种类型,对相关算法的特点和研究进展进行总结,并选择了10组scRNA-seq数据集对这些聚类算法进行性能评价。实验结果表明,现有聚类方法中SC3、Seurat和SIMLR的性能较好,在5类模型中,基于密度模型的算法具有最优性能,体现出较好的应用价值。 Withthe development of single-cell sequencing technology,many clustering algorithms based on single-cell RNA sequencing data have been proposed and applied to single cell classification and achieve good application results.But so far,the research field of single-cell clustering algorithms still lacks summary research on clustering models and performance evaluation studies of different clustering models.Therefore,from the perspective of the clustering model,we divide 11 common single-cell clustering algorithms into five types:K-means clustering,hierarchical clustering,graphic-based clustering,model-based clustering,and density-based clustering.The characteristics and research progress of related algorithms are summarized,and ten sc RNA-seq datasets are selected for evaluation of 11 clustering algorithms.The experimental results showthat the performance of SC3,Seurat,and SIMLR are better in the existing clustering methods.Among the five types of models,the algorithms based on the density model have the best performance and reflect good application value.
作者 何睿 余娜 李淼 张峻巍 王浩杰 赵玉茗 HE Rui;YU Na;LI Miao;ZHANG Junwei;WANG Haojie;ZHAO Yuming(Information and Computer Engineering College,Northeast Forestry University,Harbin 150000,China)
出处 《智能计算机与应用》 2020年第7期104-108,共5页 Intelligent Computer and Applications
基金 国家级大学生创新创业训练计划(201810225173) 国家自然科学基金(61971119)
关键词 细胞分类 聚类算法 单细胞测序 Cell classification Cluster algorithm Single cell sequencing
  • 相关文献

参考文献3

二级参考文献18

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:116
  • 2HanJiawei Kamber M 范明等译.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4HAND David,MANNILA Heikki,SMYTH Padhraic.数据挖掘原理[M].北京:机械工业出版社,2003:135-206.
  • 5Ester M, Kriegel H -P, Sander J, et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proe. 2nd Int Conf on Knowledge Discovery and Data Mining, Portland, OR,1996. 226-231
  • 6Ankerst M, Breunig M, Kriegel H-P, et al. OPTICS: Ordering Points To Identify the Clustering Structure. In.. Proe. ACM SIGMOD'99, Int Conf. on Management of Data, Philadelphia,PA,1999
  • 7Breunig M M, Kriegel H-P, Ng R T, et al. LOF: identifying density-based local outliers. In: Proc. ACM SIGMOD 2000 Int Conf on Management of Data, Dalles, TX, 2000
  • 8Tang Jian, Chen Zhixiang, Ada Wai-chee Fu, et al. A Robust Outlier Detection Scheme for Large Data Sets. In: http://www.cs. panarn, edu/-chen/papers. html
  • 9Zhou Yong-Feng, Liu Qing-Bao, Deng Su, et al. An Incremental Outlier Factor Based Clustering Algorithm. In:the First International Conference on Machine Learning and Cybernetics,Nov2002, CHINA
  • 10Jin Wen, Tung A K H, Han Jiawei. Mining Top-n Local Outliers in Large Databases. In: Proc. ACM KDD 2001, San Francisco,California USA

共引文献1125

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部