期刊文献+

基于深度学习的维吾尔语语句情感倾向分析 被引量:7

Emotional tendency analysis of Uyghur statement based on deep learning
在线阅读 下载PDF
导出
摘要 提出一种基于栈式自编码神经网络(SAE)的维吾尔语语句情感倾向分析方法。利用深度学习思想,将高维的维吾尔语语句空间特征向量变换到新的低维特征空间,学习并提取维吾尔语语句中隐含的语义特征。为提高特征对文本语义的表达,将富含词汇语义及上下文位置关系的句向量特征与情感特征组合进行融合,训练栈式自编码器,通过引入softmax层完成维吾尔语语句的情感分类。通过实验优选模型隐层层数、句向量维度,同传统的情感分类方法进行比较,实验结果表明,该方法更适用于维吾尔语语句情感倾向分析,微平均值为90.4%,宏平均值为90.5%。 A method based on stacked autoencoder(SAE)was presented to analyze the emotional tendency of Uyghur sentence.Deep learning was used to transform those high-dimensional vectors into new,low-dimensional and essential ones,and implicit semantic information was extracted.To improve the expression of semantic feature,sentence vector feature and small amount of emotional features were integrated to train a stacked autoencoder,and softmax regression was introduced to classify the Uyghur sentence.The number of hidden layers and paragraph vector dimensions were optimized through experimental model.The results of experiments show that the proposed approach achieves 90.4% of MicroF1 value and 90.5% of MacroF1 value,which outperforms some existed techniques for Uyghur sentence sentiment identification.
出处 《计算机工程与设计》 北大核心 2016年第8期2213-2217,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61563051 61262064 60963017) 国家自然科学基金重点项目(61331011)
关键词 维吾尔语 深度学习 栈式自编码神经网络 特征融合 情感分析 Uyghur deep learning stacked autoencoder feature fusion sentiment analysis
  • 相关文献

参考文献5

二级参考文献54

  • 1娄震,金忠,杨静宇.基于类条件置信变换的后验概率估计方法[J].计算机学报,2005,28(1):18-24. 被引量:6
  • 2业宁,王迪,窦立君.信息熵与支持向量的关系[J].广西师范大学学报(自然科学版),2006,24(4):127-130. 被引量:10
  • 3施建宇,潘泉,张绍武,邵壮超,姜涛.基于多特征融合的蛋白质折叠子预测[J].北京生物医学工程,2006,25(5):482-485. 被引量:2
  • 4YANG Yi-ming, PEDERSEN J O. A comparative study on feature selection in text categorization[ C ]//Proc of the 14th International Conference on Machine Learning. San Francisco, CA: Morgan Kaufmann, 1997: 412-420.
  • 5KIM SM,HOVY E.Identifying and analyzing judgmentopinions[C].PA,USA:Proceedings of the Main Conferenceon Human Language Technology Conference of the North A-merican Chapter of the Association of Computational Linguis-tics,2006:200-207.
  • 6Devitt A,Ahmad K.Sentiment polarity identification in finan-cial news:A cohesion based approach[C].Prague,CZ:As-sociation for Computational Linguistics,2007:984-991.
  • 7PANG B,LEE L.Opinion mining and sentiment analysis[J].Foundations and Trends in Information Retrieval,2008,2(1-2):1-135.
  • 8Titov I,McDonald R.Modeling online reviews with multi-grain topic models[C].New York,NY,USA:Proceedingsof the 17th International Conference on World Wide Web,2008:1-120.
  • 9Stoyanov V,Cardie C.Topic identification for fine-grained o-pinion analysis[C].PA,USA:Proceedings of the 22nd In-ternational Conference on Computational Linguistics,2008:817-824.
  • 10CHOI Y,CARDIE C,RILOF E.Identifying sources ofopinions with conditional random fields and extraction patterns[C].PA,USA:Proceedings of the Conference on HumanLanguage Technology and Empirical Methods in Natural Lan-guage Processing,2009:355-362.

共引文献85

同被引文献60

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部