期刊文献+

意见挖掘中维吾尔语文本隐式情感分析 被引量:5

Implicit sentiment analysis of Uyghur text in opinion mining
在线阅读 下载PDF
导出
摘要 目前的情感分析研究大部分仅局限于能够明显地表达意见的主观性文本,却没有对一些隐含地表达情感的文本进行分析。针对这一不足,提出一种基于条件随机场(CRFs)模型的意见挖掘中维吾尔语文本隐式情感分析方法。利用互信息(MI)衡量上下文的依赖度,结合词法、语境依赖词、标点符号和习语等特征用于隐式情感分析。在特征选择时,通过对信息增益(IG)进行改进,解决语料中数据集不平衡的问题。该方法用于维吾尔语文本隐式情感分析的准确率为77.11%,召回率为78.37%,表明了其在意见挖掘中隐式情感分析任务上的有效性。 Most of the current researches on the sentiment analysis can analyze the opinions that are expressed clearly in the subjective text, but fail to analyze the ones that are expressed implicitly. To solve this issue, a method based on the CRFs model was proposed to analyze the implicit sentiment of the Uyghur opinioned text. The mutual information (MI) was used to compute the dependence of the context, and the morphology, the word depending on context, the punctuation, idioms and other features were combined, which contributed to the implicit sentiment analysis. When these features were selected, the improved information gain fIG) was applied in the imbalanced dataset of the corpus. The experimental results show that the precision rate and the recall rate of the sentiment analysis reach 77.11% and 78. 37% respectively, which demonstrate the efficiency of the proposed method on the implicit sentiment analysis.
出处 《计算机工程与设计》 CSCD 北大核心 2014年第9期3295-3300,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61262064 60963017 61063026 61063043 61331011) 国家社科基金项目(10BTQ045 11XTQ007)
关键词 隐式情感 条件随机场(CRFs) 互信息(MI) 特征选择 信息增益(IG) 维吾尔语 implicit sentiment CRFs mutual information (MI) feature selection information gain (IG) Uyghur
  • 相关文献

参考文献14

  • 1LIU B. Sentiment analysis and subjectivity[M]. 2nd ed. Handbook of Natural Language Processing. Florida: CRC Press, 2010: 1-38.
  • 2ZHAO Yan-Yan,QIN Bing,LIU Ting.Integrating Intra-and Inter-document Evidences for Improving Sentence Sentiment Classification[J].自动化学报,2010,36(10):1417-1425.
  • 3Scheible C. Sentiment translation through lexicon induction [C] //Proceedings of the ACL Student Research Workshop, 2010: 25-30.
  • 4JIANG L, Yu M, ZHOU M, et al. Target-dependent twitter sentiment classification [C] //Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 2011:151-160.
  • 5Prabowo R, Thelwall M. Sentiment analysis: A combined ap- proach [J]. Journal of Informetries, 2009, 3 (l): 143-157.
  • 6林政,谭松波,程学旗.基于情感关键句抽取的情感分类研究[J].计算机研究与发展,2012,49(11):2376-2382. 被引量:29
  • 7ZHAO J, LIU K, WANG G. Adding redundant features for CRFs-based sentence sentiment classification [C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2008: 117-126.
  • 8Balahur A, Hermida JM, Montoyo A. Detecting implicit ex pressions of sentiment in text based on commonsense knowledge [C] //Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis, 2011: 53-60.
  • 9Davidov D, Tsur O, Rappoport A. Semi-supervised recognition of sarcastic sentences in twitter and Amazon [C]//Proceeding of the Conference on Computational Linguistics, 2010: 107-116.
  • 10ZHANG L, LIU B. Identifying noun product features that imply opinions [C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 2011 : 575-580.

二级参考文献33

  • 1Gamon M. Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: Proceedings of the 20th Interna- tional Conference on Computational Linguistics. Geneva, Switzerland: Association for Computational Linguistics, 2004. 841-847.
  • 2Kim S M, Hovy E. Automatic identification of pro and con reasons in online reviews. In: Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics. Sydney, Australia: Association for Computational Linguistics, 2006. 483-490.
  • 3Zhao J, Liu K, Wang G. Adding redundant features for CRFs-based sentence sentiment classification. In: Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. Hawaii, USA: Association for Computational Linguistics, 2008. 117-126.
  • 4Hu M, Liu B. Mining and summarizing customer reviews. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, USA: ACM. 2004. 168-177.
  • 5Kim S M, Hovy E. Automatic detection of opinion bearing words and sentences. In: Proceedings of the 2nd International Joint Conference on Natural Language Processing. Jeju Island, Korea: Springer, 2005. 61-66.
  • 6Yu H, Hatzivassiloglou V. Towards answering opinion questions: separating facts from opinions and identifying the polarity of opinion sentences. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing. Sapporo, Japan: Association for Computational Linguistics, 2003. 129-136.
  • 7Wu F Y. The potts model. Reviews of Modern Physics, 1982, 54(1): 235-268.
  • 8Pang B, Lee L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics. Barcelona, Spain: Association for Computational Linguistics, 2004. 271-278.
  • 9McDonald R, Hannan K, Neylon T, Wells M, Reynar J. Structured models for fine-to-coarse sentiment analysis. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics, 2007. 432-439.
  • 10Tanaka K, Morita T. Application of cluster variation method to image restoration problem. In: Proceedings of the Theory and Applications of the Cluster Variation and Path Probability Methods. New York, USA: Association for Computational Linguistics, 1996. 353-373.

共引文献33

同被引文献47

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部