期刊文献+

一种基于语义关系与条件随机场模型的电子商务情感评价单元识别方法 被引量:4

An E-Commerce Emotion Evaluation Unit Recognition Method Based on Semantic Relation and Conditional Random Field Model
原文传递
导出
摘要 为了解决海量电商评价信息中每个评价对象的情感倾向性和评价对象与评价词不匹配问题,提出一种结合句法关系与语义关系的多粒度条件随机场模型抽取评价单元方法SSMCRFs(syntactic semantic and multi-grained conditional random fields,SSMCRFs).首先,爬取京东商城的评论数据为基础数据,将评论文本进行句法关系,语义关系等处理;然后,使用TF-IDF算法对预处理后的数据集进行统计分析,以确定用户的关注度;最后,使用条件随机场模型进行评价单元识别.实验结果表明,SSMCRFs在识别评价单元上准确率达到92.92%,召回率达到93.25%,F值达到93.08%.相对于马晓君等(2017)的方法,SSMCRFs方法在准确率,召回率,F值上均有较大的提高. In order to solve the problem of the emotional orientation of each evaluation object in the massive e-commerce evaluation information and the mismatch between the evaluation object and the evaluation word,a multi-granularity conditional random field model extraction evaluation unit method SSMCRFs(syntactic semantic and multi-grained conditional random fields,SSMCRFs) is proposed.First,we crawl the comment data of Jingdong Mall as the basic data,and process the comment text in syntactic relationship and semantic relationship;then,we use the TF-IDF algorithm to perform statistical analysis on the preprocessed data set to determine the user’s attention;Finally,the conditional random field model is used for evaluation unit identification.The experimental results show that the accuracy rate of SSMCRFs in the identification and evaluation unit is 92.92%,the recall rate is93.25%,and the F value is 93.08%.Compared with the method by Ma,et al.(2017),the SSMCRFs method has a better improvement in accuracy,recall rate and F value.
作者 陈苹 冯林 余游 徐其凤 CHEN Ping;FENG Lin;YU You;XU Qifeng(College of Computer Science,Sichuan Normal University,Chengdu 610101)
出处 《系统科学与数学》 CSCD 北大核心 2020年第1期63-80,共18页 Journal of Systems Science and Mathematical Sciences
基金 国家科技支撑计划课题(2014BAH11F01)资助课题。
关键词 评价单元识别 句法分析 语义分析 条件随机场模型 Evaluation unit identification syntax analysis semantic analysis conditional random field model
  • 相关文献

参考文献9

二级参考文献73

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:329
  • 2娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625.
  • 3王根,赵军.基于多重冗余标记CRFs的句子情感分析研究[J].中文信息学报,2007,21(5):51-55. 被引量:32
  • 4姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 5Agrawal R, Imielinski T, Swami A. Mining Association Rules be-tween Sets of Items in Large Databases // Proc of the ACM SIGMODInternational Conference on Management of Data. Washington,USA, 1993: 207-216.
  • 6Liu B, Hu M Q, Cheng J S. Opinion Observer: Analyzing andComparing Opinions on the Web // Proc of the 14th InternationalConference on World Wide Web. Chiba, Japan, 2005 : 342-351.
  • 7Hu M Q, Liu B. Mining and Summarizing Customer Reviews //Proc of the 10th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining. Seattle, USA, 2004 : 168-177.
  • 8Kim S M, Hovy E. Determining the Sentiment of Opinions // Procof the 20th International Conference on Computational Linguistics.Geneva, Switzerland, 2004 : 1367-1373.
  • 9刘群,李素建.基于知网的词汇语义相似度的计算//第三届汉语词汇语义学研讨会论文集.台北,2002: 59-76.
  • 10Kim S M, Hovy E. Automatic Identification of Pro and Con Rea-sons in Online Reviews // Proc of the 21 st International Conferenceon Computational Linguistics and 44th Annual Meeting of the Asso-ciation for Computational Linguistics. Sydney, Australia, 2006 ;483-490.

共引文献143

同被引文献43

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部