期刊文献+

基于量子粒子群优化和扩展卡尔曼滤波的相量测量算法 被引量:1

Phasor Measurement Algorithm Based on Quantum Particle Swarm Optimization and Extended Kalman Filter
原文传递
导出
摘要 电力系统中的信号往往含有各种噪声、谐波、间谐波的干扰,严重影响了相量测量的精度。对此,在复数扩展卡尔曼滤波(ECKF)的基础上,运用改进的量子粒子群优化(IQPSO)算法改进滤波迭代过程中的量测噪声协方差矩阵和模型噪声协方差矩阵,并测量电力信号的幅值、频率和相角。对各种非平稳正弦信号的仿真结果表明,相较修正的复数扩展卡尔曼滤波(RECKF)算法,IQPSO-ECKF算法提高了复数扩展卡尔曼滤波的相量测量精度和收敛速度。研究成果丰富了电力系统信号测量的内容。 Signals in power systems often contain a variety of noise,harmonic and inter-harmonic interference,which seriously affected the accuracy of phasor measurement.Based on the extended complex Kalman filter(ECKF),an improved quantum particle swarm optimization(IQPSO)is used to optimize measurement noise covariance matrix and model noise covariance matrix in the filtering iterative process and measure the amplitude,frequency and phase angle of electric signal.The simulation results of various nonstationary sinusoidal signals show that compared with the modified robust complex extended Kalman filtering(RECKF)algorithm,the IQPSO-ECKF can improve the accuracy and convergence rate of the phase measurement of complex extended Kalman filter.The research findings enrich the content of power system signal measurement.
出处 《水电能源科学》 北大核心 2016年第5期194-198,共5页 Water Resources and Power
基金 国家自然科学基金青年基金项目(51505317) 山西省自然科学基金项目(2015011057)
关键词 量子粒子群优化 复数扩展卡尔曼滤波 相量测量 量测噪声协方差矩阵 模型噪声协方差矩阵 quantum particle swarm optimization extended complex Kalman filter phasor measurement measurement error covariance matrix model error covariance matrix
  • 相关文献

参考文献6

  • 1陈祥训.实小波变换提取相位信息方法研究[J].中国电机工程学报,2007,27(22):8-13. 被引量:12
  • 2彭和平,郭晓冬,吴通华,朱英英,姜亚梅.一种固定采样间隔的新型变系数DFT测频方法[J].水电能源科学,2014,32(5):180-182. 被引量:3
  • 3A A Girgis, W L Peterson. Adaptive Estimation of Power System Frequency Deviation and Its Rate of Change for Calculating Sudden Power System Over- loads[J]. Power Delivery, IEEE Transactions on, 1990,5 (2) : 585-594.
  • 4R Panigrahi,S Rauta,P C Panda. Robust Extended Complex Kalman Filter Applied to Distorted Power System Signals for Frequency Estimation[C]//In- ternationcl Conference on Power System, Kharag- pur, India, 2009.
  • 5Chien-Hung Huang, Chien-Hsing Lee, Kuang-Jung Shih,et al. A Robust Technique for Frequency Esti- mation of Distorted Signals in Power Systems[J].Instrumentation and Measurement, IEEE Transac- tions on,2010,59(8) :2 026-2 036.
  • 6潘大志,刘志斌.量子粒子群算法的改进实现[J].计算机工程与应用,2013,49(10):25-27. 被引量:7

二级参考文献33

  • 1王茂海,孙元章.基于DFT的电力系统相量及功率测量新算法[J].电力系统自动化,2005,29(2):20-24. 被引量:78
  • 2吴崇昊,陆于平,饶丹.用时域连续有限冲激响应滤波器进行过零测频的方法[J].电网技术,2007,31(7):18-21. 被引量:4
  • 3Oppenheim A V,Li J S.The importance of phase in signal[J].Proc.IEEE,1981,69(5):529-541.
  • 4Spaendonck R,Blue T,Baraniuk Ret al.Orthogonal hilbert transform filterbanks and wavelets[C].ICASSP03,Hong Kong,2003.
  • 5Unser M,Aldroubi A.A review of wavelets in biomedical applications[J].Proceedings of the IEEE,1996,84(4):626-638.
  • 6Saddad H.Analog complex wavelet filter[C].ISCAS2005,Kobe,Japan,2005,3287-3290.
  • 7Lawton W.Applications of complex valued wavelet transforms to subband decomposition[J].IEEE Trans.Signal Processing,1993,41(12):3566-3568.
  • 8Ghohal A.Complex Wavelets,CS658:Seminar on Shape Analysis and Retrieval 2004[J/OL].www.cs.jhu.edu/-misha/Fa1104/Arnab.pdf.
  • 9Femandes F,Van Spaendonck R,Burrus C.A new framework for complex wavelet transforms[J].IEEE Trans.signal Processing,2003,51(7):1825-1837.
  • 10Fernandes F,Selesnick Ivan W,van Spaendonck R,et al.Complex wavelet transforms with allpass filters[J].Signal Processing,2003,83(8):1689-1706.

共引文献19

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部