期刊文献+

量子粒子群算法的改进实现 被引量:7

Realization of improved Quantum-behaved Particle Swarm Optimization algorithm
在线阅读 下载PDF
导出
摘要 为了进一步提高量子粒子群算法的精度,从描述粒子状态波函数的δ势阱特征长度L(t)出发,重新修改其评价方式。通过给群体中的每个粒子引入随机权重,生成随机权重平均最优位置来重新评价L(t),以增强算法的随机性,帮助算法逃离局部极小值点的束缚,使算法尽快找到全局极值点。通过几个典型函数测试表明,改进算法的收敛精度优于QPSO算法,并且具有很强的避免陷入局部极值点的能力。 In order to further improve the accuracy of Quantum Particle Swarm Optimization algorithm, the evaluation method of δ trap characteristic length L(t) of wave function for describing the particle’s state is modified. Introducing a random weight to each particle in swarm, and generating a random -weighed mean best position to reassess L(t) , enhance the algorithmic randomness, help algorithm to escape from local minima to manacle, make the algorithm to find the global extreme points. Through the test of several typical functions, its result shows that the convergence accuracy of the improved algorithm is better than QPSO algorithm’s, and it can be very strong to avoid falling into local extremums.
出处 《计算机工程与应用》 CSCD 2013年第10期25-27,共3页 Computer Engineering and Applications
基金 国家自然科学基金项目(No.50874094) 四川省教育厅重点项目(No.11ZA040) 西华师范大学博士启动基金项目(No.12B022)
关键词 粒子群优化 量子粒子群优化 随机权重 随机加权平均最优位置 Particle Swarm Optimization Quantum-behaved Particle Swarm Optimization random weight random-weighted mean best position
  • 相关文献

参考文献7

  • 1Kennedy J, Eberhart K.Particle Swarm Optimization[C]//Proc IEEE Int Conference on Neural Networks.[S.1.]:IEEE, 1995: 1942-1948.
  • 2Eberhart K, Kennedy J.A new optimizer using particle swam theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995: 39-43.
  • 3Shi Y,Eberhart R.A Modified Particle Swarm Optimizer[C]// Proceedings of the IEEE International Conference on Evolu- tionary Computation.Piscataway,NJ:IEEE Press, 1998:69-73.
  • 4Pan D Z, Liu Z B.An improved Particle Swarm Optimization algorithm based on the optimal and sub-optimal positions[J]. Journal of Comput Infor Syst,2012,8(5) : 1987-1994.
  • 5黄利,杜伟伟,丁立新.基于Sigmoid惯性权重自适应调整的粒子群优化算法[J].计算机应用研究,2012,29(1):32-34. 被引量:16
  • 6任子晖,王坚.动态拓扑结构的多目标粒子群优化算法[J].同济大学学报(自然科学版),2011,39(8):1222-1226. 被引量:10
  • 7Sun J, Xu W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of IEEE Congress Evolu- tionary Computation, USA, 2004: 325-331.

二级参考文献21

  • 1陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:316
  • 2徐杰,黄德先.基于混合粒子群算法的多目标车辆路径研究[J].计算机集成制造系统,2007,13(3):573-579. 被引量:31
  • 3Leong Yen,Wen Fung , Gary G. PSO-based multiobjective optimization with dynamic population size and adaptive local archives [J]. IEEE Transactions on Systems, Man, and Cybernetics Par t B: Cybernetics, 2008,38 (5): 1270.
  • 4Brits R,Engelbrecht A P, F. van den Bergh. Locating multiple optimization using particle swarm optimization [J]. Applied Mathematics and Computation, 2007,189 : 1859.
  • 5Praveen Kumar Tripathi, Sanghamitra Bandyopadhyay, Sankar Kumar Pal. Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients [ J ]. Information Sciences, 2007,177 : 5033.
  • 6LI Hui, ZHANG Qingfu. Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-I [J ]. IEEE Transactions on Evolution Computation, 2009,13 (1) : 284.
  • 7Tan K C, Yang Y J, C-oh C K. A distributed cooperative Co- evolutionary algorithm for multi-objective optimization [J]. IEEE Transactions on Evolutionary Computation, 2006, 10 (5) : 527.
  • 8Nebro A J, Luna F,Alba E,et al. AbYSS:adapting scatter search to multi-objective optimization [J]. IEEE Transactions on Evolutionary Computation, 2008,12 (4): 439.
  • 9Amosa S Bandyopadhyay,Saha S, Maulik U, et al. A simulated annealing-based multi-objective optimization algorithm[J]. IEEE Transactions on Evolutionary Computation, 2008, 12 (3) :269.
  • 10Carlos A Coello, Coello Pulido Gregorio Toscano, Salazar Maximino, et al. Multiple objectives with particle swarm optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2004,8 (3) : 256.

共引文献24

同被引文献66

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部